リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「State-dependent brainstem ensemble dynamics and their interactions with hippocampus across sleep states」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

State-dependent brainstem ensemble dynamics and their interactions with hippocampus across sleep states

Tomomi Tsunematsu Amisha A Patel Arno Onken Shuzo Sakata 東北大学 DOI:10.7554/eLife.52244

2020.01.14

概要

The brainstem plays a crucial role in sleep-wake regulation. However, the ensemble dynamics underlying sleep regulation remain poorly understood. Here, we show slow, state- predictive brainstem ensemble dynamics and state-dependent interactions between the brainstem and the hippocampus in mice. On a timescale of seconds to minutes, brainstem populations can predict pupil dilation and vigilance states and exhibit longer prediction power than hippocampal CA1 neurons. On a timescale of sub-seconds, pontine waves (P-waves) are accompanied by synchronous firing of brainstem neurons during both rapid eye movement (REM) and non-REM (NREM) sleep. Crucially, P-waves functionally interact with CA1 activity in a state-dependent manner: during NREM sleep, hippocampal sharp wave-ripples (SWRs) precede P-waves. On the other hand, P-waves during REM sleep are phase-locked with ongoing theta oscillations and are followed by burst firing of CA1 neurons. This state-dependent global coordination between the brainstem and hippocampus implicates distinct functional roles of sleep.

この論文で使われている画像

参考文献

Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. 2007. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424. DOI: https://doi.org/10.1038/ nature06310, PMID: 17943086

Anafi RC, Kayser MS, Raizen DM. 2019. Exploring phylogeny to find the function of sleep. Nature Reviews Neuroscience 20:109–116. DOI: https://doi.org/10.1038/s41583-018-0098-9, PMID: 30573905

Aston-Jones G, Cohen JD. 2005. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience 28:403–450. DOI: https://doi.org/10.1146/annurev. neuro.28.061604.135709, PMID: 16022602

Aulsebrook AE, Jones TM, Rattenborg NC, Roth TC, Lesku JA. 2016. Sleep ecophysiology: integrating neuroscience and ecology. Trends in Ecology & Evolution 31:590–599. DOI: https://doi.org/10.1016/j.tree. 2016.05.004, PMID: 27262386

Berens P. 2009. CircStat: a matlab toolbox for circular statistics. Journal of Statistical Software 31:1–21. DOI: https://doi.org/10.18637/jss.v031.i10

Bergel A, Deffieux T, Demene´ C, Tanter M, Cohen I. 2018. Local hippocampal fast gamma rhythms precede brain-wide hyperemic patterns during spontaneous rodent REM sleep. Nature Communications 9:5364. DOI: https://doi.org/10.1038/s41467-018-07752-3, PMID: 30560939

Bizzi E, Brooks DC. 1963. Functional connections between pontine reticular formation and lateral geniculate nucleus during deep sleep. Archives Italiennes De Biologie 101:666–680. PMID: 14163921

Boyce R, Williams S, Adamantidis A. 2017. REM sleep and memory. Current Opinion in Neurobiology 44:167–177. DOI: https://doi.org/10.1016/j.conb.2017.05.001, PMID: 28544929

Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. 2012. Control of sleep and wakefulness. Physiological Reviews 92:1087–1187. DOI: https://doi.org/10.1152/physrev.00032.2011, PMID: 22811426

Buzsa´ ki G. 2002. Theta oscillations in the Hippocampus. Neuron 33:325–340. DOI: https://doi.org/10.1016/ S0896-6273(02)00586-X, PMID: 11832222

Buzsa´ ki G. 2015. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25:1073–1188. DOI: https://doi.org/10.1002/hipo.22488, PMID: 26135716

Callaway CW, Lydic R, Baghdoyan HA, Hobson JA. 1987. Pontogeniculooccipital waves: spontaneous visual system activity during rapid eye movement sleep. Cellular and Molecular Neurobiology 7:105–149. DOI: https://doi.org/10.1007/BF00711551, PMID: 3308096

Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA. 2010. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. Journal of Neurophysiology 103:844– 857. DOI: https://doi.org/10.1152/jn.00825.2009, PMID: 20007501

Datta S, Calvo JM, Quattrochi J, Hobson JA. 1992. Cholinergic microstimulation of the peribrachial nucleus in the cat. I. immediate and prolonged increases in ponto-geniculo-occipital waves. Archives Italiennes De Biologie 130:263–284. DOI: https://doi.org/10.4449/aib.v130i4.629, PMID: 1489248

Datta S. 1997. Cellular basis of pontine ponto-geniculo-occipital wave generation and modulation. Cellular and Molecular Neurobiology 17:341–365. DOI: https://doi.org/10.1023/a:1026398402985, PMID: 9187490

Datta S, Siwek DF, Patterson EH, Cipolloni PB. 1998. Localization of pontine PGO wave generation sites and their anatomical projections in the rat. Synapse 30:409–423. DOI: https://doi.org/10.1002/(SICI)1098-2396 (199812)30:4<409::AID-SYN8>3.0.CO;2-#, PMID: 9826233

Datta S. 2012. Phasic Pontine-Wave (P-Wave) Generation: Cellular-Molecular-Network Mechanism and Functional Significance. San Diego: Sleep and Brain Activity.

Datta S, Hobson JA. 1995. Suppression of ponto-geniculo-occipital waves by neurotoxic lesions of pontine caudo-lateral peribrachial cells. Neuroscience 67:703–712. DOI: https://doi.org/10.1016/0306-4522(95)00081-S, PMID: 7675196

Datta S, Maclean RR. 2007. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neuroscience & Biobehavioral Reviews 31:775–824. DOI: https://doi.org/10.1016/j.neubiorev.2007.02.004, PMID: 17445891

De Marchis C, Schmid M, Bibbo D, Castronovo AM, D’Alessio T, Conforto S. 2013. Feedback of mechanical effectiveness induces adaptations in motor modules during cycling. Frontiers in Computational Neuroscience 7: 35. DOI: https://doi.org/10.3389/fncom.2013.00035, PMID: 23616763

Farber J, Marks GA, Roffwarg HP. 1980. Rapid eye movement sleep PGO-type waves are present in the dorsal pons of the albino rat. Science 209:615–617. DOI: https://doi.org/10.1126/science.6994229, PMID: 6994229 Fe´ votte C, Cemgil AT. 2009. Nonnegative matrix factorizations as probabilistic inference in composite models. 17th European Signal Processing Conference IEEE (EUSIPCO 2009) 1913–1917.

Hentschke H, Stu¨ ttgen MC. 2011. Computation of measures of effect size for neuroscience data sets. European Journal of Neuroscience 34:1887–1894. DOI: https://doi.org/10.1111/j.1460-9568.2011.07902.x, PMID: 220 82031

He´ rice´ C, Patel AA, Sakata S. 2019. Circuit mechanisms and computational models of REM sleep. Neuroscience Research 140:77–92. DOI: https://doi.org/10.1016/j.neures.2018.08.003, PMID: 30118737

Hobson JA, McCarley RW, Wyzinski PW. 1975. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58. DOI: https://doi.org/10.1126/science.1094539, PMID: 1094539

Imeri L, Opp MR. 2009. How (and why) the immune system makes us sleep. Nature Reviews Neuroscience 10: 199–210. DOI: https://doi.org/10.1038/nrn2576

Irwin MR. 2015. Why sleep is important for health: a psychoneuroimmunology perspective. Annual Review of Psychology 66:143–172. DOI: https://doi.org/10.1146/annurev-psych-010213-115205, PMID: 25061767

Jeannerod M, Mouret J, Jouvet M. 1965. Secondary effects of visual deafferentation on Ponto-Geniculo- Occipital phase electrical activity of paradoxical sleep. The Journal of Physiology 57:255–256.

Jouvet M. 1962. Research on the neural structures and responsible mechanisms in different phases of physiological sleep]. Archives Italiennes De Biologie 100:125–206. PMID: 14452612

Jouvet M. 1969. Biogenic amines and the states of sleep. Science 163:32–41. DOI: https://doi.org/10.1126/ science.163.3862.32, PMID: 4303225

Karashima A, Nakamura K, Sato N, Nakao M, Katayama N, Yamamoto M. 2002. Phase-locking of spontaneous and elicited ponto-geniculo-occipital waves is associated with acceleration of hippocampal theta waves during rapid eye movement sleep in cats. Brain Research 958:347–358. DOI: https://doi.org/10.1016/S0006-8993(02) 03673-9, PMID: 12470871

Karashima A, Nakao M, Honda K, Iwasaki N, Katayama N, Yamamoto M. 2004. Theta wave amplitude and frequency are differentially correlated with pontine waves and rapid eye movements during REM sleep in rats. Neuroscience Research 50:283–289. DOI: https://doi.org/10.1016/j.neures.2004.07.007, PMID: 15488291

Karashima A, Nakao M, Katayama N, Honda K. 2005. Instantaneous acceleration and amplification of hippocampal theta wave coincident with phasic pontine activities during REM sleep. Brain Research 1051:50–56. DOI: https://doi.org/10.1016/j.brainres.2005.05.055, PMID: 15982642

Larsen RS, Waters J. 2018. Neuromodulatory correlates of pupil dilation. Frontiers in Neural Circuits 12:21. DOI: https://doi.org/10.3389/fncir.2018.00021, PMID: 29593504

Lee DD, Seung HS. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401:788– 791. DOI: https://doi.org/10.1038/44565, PMID: 10548103

Lee DD, Seung HS. 2001. Algorithms for Non-negative matrix factorization. 14th Annual Neural Information Processing Systems Conference, Denver, United States.

Liu D, Dan Y. 2019. A motor theory of Sleep-Wake control: arousal-action circuit. Annual Review of Neuroscience 42:27–46. DOI: https://doi.org/10.1146/annurev-neuro-080317-061813, PMID: 30699051

Luppi PH, Clement O, Sapin E, Peyron C, Gervasoni D, Le´ ger L, Fort P. 2012. Brainstem mechanisms of paradoxical (REM) sleep generation. Pflu¨gers Archiv - European Journal of Physiology 463:43–52. DOI: https:// doi.org/10.1007/s00424-011-1054-y, PMID: 22083642

Luppi PH, Peyron C, Fort P. 2017. Not a single but multiple populations of GABAergic neurons control sleep. Sleep Medicine Reviews 32:85–94. DOI: https://doi.org/10.1016/j.smrv.2016.03.002, PMID: 27083772

Lyngholm D, Sakata S. 2019. Cre-Dependent optogenetic transgenic mice without early Age-Related hearing loss. Frontiers in Aging Neuroscience 11:29. DOI: https://doi.org/10.3389/fnagi.2019.00029, PMID: 30863301

Mander BA, Winer JR, Walker MP. 2017. Sleep and human aging. Neuron 94:19–36. DOI: https://doi.org/10. 1016/j.neuron.2017.02.004, PMID: 28384471

Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M. 2018. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience 21:1281–1289. DOI: https://doi.org/10.1038/s41593-018-0209-y, PMID: 30127430

McCarley RW, Nelson JP, Hobson JA. 1978. Ponto-geniculo-occipital (PGO) burst neurons: correlative evidence for neuronal generators of PGO waves. Science 201:269–272. DOI: https://doi.org/10.1126/science.663656, PMID: 663656

McCarley RW, Hobson JA. 1971. Single neuron activity in cat gigantocellular tegmental field: selectivity of discharge in desynchronized sleep. Science 174:1250–1252. DOI: https://doi.org/10.1126/science.174.4015. 1250, PMID: 5133450

McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E, Cadwell CR, Tolias AS, Cardin JA, McCormick DA. 2015. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87:1143–1161. DOI: https://doi.org/10.1016/j.neuron.2015.09.012, PMID: 26402600

Mizuseki K, Miyawaki H. 2017. Hippocampal information processing across sleep/wake cycles. Neuroscience Research 118:30–47. DOI: https://doi.org/10.1016/j.neures.2017.04.018, PMID: 28506629

Montgomery SM, Sirota A, Buzsa´ ki G. 2008. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. Journal of Neuroscience 28:6731–6741. DOI: https://doi.org/10.1523/ JNEUROSCI.1227-08.2008, PMID: 18579747

Moruzzi G. 1963. Active processes in the brain stem during sleep. Harvey Lectures 58:233–297. PMID: 14272578

Musiek ES, Holtzman DM. 2016. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354:1004–1008. DOI: https://doi.org/10.1126/science.aah4968, PMID: 27885006

Nelson JP, McCarley RW, Hobson JA. 1983. REM sleep burst neurons, PGO waves, and eye movement information. Journal of Neurophysiology 50:784–797. DOI: https://doi.org/10.1152/jn.1983.50.4.784, PMID: 6631463

Onken A, Liu JK, Karunasekara PP, Delis I, Gollisch T, Panzeri S. 2016. Using matrix and tensor factorizations for the Single-Trial analysis of population spike trains. PLOS Computational Biology 12:e1005189. DOI: https://doi. org/10.1371/journal.pcbi.1005189, PMID: 27814363

Pace-Schott EF, Hobson JA. 2002. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nature Reviews Neuroscience 3:591–605. DOI: https://doi.org/10.1038/nrn895, PMID: 12154361

Pachitariu M, Steinmetz N, Kadir S, Carandini M, Harris KD. 2016. Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels. bioRxiv. DOI: https://doi.org/10.1101/061481

Peever J, Fuller PM. 2017. The biology of REM sleep. Current Biology 27:R1237–R1248. DOI: https://doi.org/10. 1016/j.cub.2017.10.026, PMID: 29161567

Radulovacki M, Virus RM, Djuricic-Nedelson M, Green RD. 1984. Adenosine analogs and sleep in rats. The Journal of Pharmacology and Experimental Therapeutics 228:268–274. PMID: 6694111

Rasch B, Born J. 2013. About sleep’s role in memory. Physiological Reviews 93:681–766. DOI: https://doi.org/10. 1152/physrev.00032.2012, PMID: 23589831

Sakai K, Sano K, Iwahara S. 1973. Eye movements and hipocampal theta activity in cats. Electroencephalography and Clinical Neurophysiology 34:547–549. DOI: https://doi.org/10.1016/0013-4694(73)90072-2, PMID: 4121327

Sakai K. 1985. Neurons Responsible for Paradoxical Sleep. Sleep: Neurotransmitters and Neuromodulators. Raven Press.

Sakai K, Jouvet M. 1980. Brain stem PGO-on cells projecting directly to the cat dorsal lateral geniculate nucleus. Brain Research 194:500–505. DOI: https://doi.org/10.1016/0006-8993(80)91231-7, PMID: 7388627

Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. 2010. Sleep state switching. Neuron 68:1023–1042. DOI: https://doi.org/10.1016/j.neuron.2010.11.032, PMID: 21172606

Sara SJ. 2017. Sleep to remember. The Journal of Neuroscience 37:457–463. DOI: https://doi.org/10.1523/ JNEUROSCI.0297-16.2017, PMID: 28100730

Scammell TE, Arrigoni E, Lipton JO. 2017. Neural circuitry of wakefulness and sleep. Neuron 93:747–765. DOI: https://doi.org/10.1016/j.neuron.2017.01.014, PMID: 28231463

Siegel JM. 2005. Clues to the functions of mammalian sleep. Nature 437:1264–1271. DOI: https://doi.org/10. 1038/nature04285, PMID: 16251951

Steriade M, Sakai K, Jouvet M. 1984. Bulbo-thalamic neurons related to thalamocortical activation processes during paradoxical sleep. Experimental Brain Research 54:463–475. DOI: https://doi.org/10.1007/BF00235472, PMID: 6723865

Steriade M, Pare´ D, Bouhassira D, Descheˆ nes M, Oakson G. 1989. Phasic activation of lateral geniculate and perigeniculate thalamic neurons during sleep with ponto-geniculo-occipital waves. The Journal of Neuroscience 9:2215–2229. DOI: https://doi.org/10.1523/JNEUROSCI.09-07-02215.1989, PMID: 2746326

Steriade M, Pare´ D, Datta S, Oakson G, Curro´ Dossi R. 1990. Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. The Journal of Neuroscience 10:2560–2579. DOI: https://doi. org/10.1523/JNEUROSCI.10-08-02560.1990, PMID: 2201752

Steriade M, McCormick DA, Sejnowski TJ. 1993a. Thalamocortical oscillations in the sleeping and aroused brain.

Science 262:679–685. DOI: https://doi.org/10.1126/science.8235588, PMID: 8235588

Steriade M, Nun˜ ez A, Amzica F. 1993b. A novel slow (< 1 hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. The Journal of Neuroscience 13:3252–3265. DOI: https://doi. org/10.1523/JNEUROSCI.13-08-03252.1993, PMID: 8340806

Steriade M. 2006. Grouping of brain rhythms in corticothalamic systems. Neuroscience 137:1087–1106. DOI: https://doi.org/10.1016/j.neuroscience.2005.10.029, PMID: 16343791

Steriade MM, McCarley RW. 1990. Brainstem Control of Wakefulness and Sleep. Springer. DOI: https://doi.org/ 10.1007/978-1-4757-4669-3

Stickgold R, Hobson JA, Fosse R, Fosse M. 2001. Sleep, learning, and dreams: off-line memory reprocessing.

Science 294:1052–1057. DOI: https://doi.org/10.1126/science.1063530, PMID: 11691983

Tobler I, Deboer T, Fischer M. 1997. Sleep and sleep regulation in normal and prion protein-deficient mice. The Journal of Neuroscience 17:1869–1879. DOI: https://doi.org/10.1523/JNEUROSCI.17-05-01869.1997, PMID: 9030645

Tononi G, Cirelli C. 2014. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81:12–34. DOI: https://doi.org/10.1016/j.neuron.2013.12.025, PMID: 24411729

Tsunematsu T, Tabuchi S, Tanaka KF, Boyden ES, Tominaga M, Yamanaka A. 2013. Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behavioural Brain Research 255:64–74. DOI: https://doi.org/10.1016/j.bbr.2013.05.021, PMID: 23707248

Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A. 2014. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. Journal of Neuroscience 34:6896–6909. DOI: https://doi.org/10.1523/ JNEUROSCI.5344-13.2014, PMID: 24828644

Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K, Weng FJ, Lin Y, Wilson MA, Brown EN. 2015. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. PNAS 112:584–589. DOI: https://doi.org/10.1073/pnas.1423136112, PMID: 25548191

Weber F, Chung S, Beier KT, Xu M, Luo L, Dan Y. 2015. Control of REM sleep by ventral medulla GABAergic neurons. Nature 526:435–438. DOI: https://doi.org/10.1038/nature14979, PMID: 26444238

Weber F, Hoang Do JP, Chung S, Beier KT, Bikov M, Saffari Doost M, Dan Y. 2018. Regulation of REM and Non- REM sleep by periaqueductal GABAergic neurons. Nature Communications 9:354. DOI: https://doi.org/10.1038/ s41467-017-02765-w, PMID: 29367602

Weber F, Dan Y. 2016. Circuit-based interrogation of sleep control. Nature 538:51–59. DOI: https://doi.org/10. 1038/nature19773, PMID: 27708309

Yague JG, Tsunematsu T, Sakata S. 2017. Distinct temporal coordination of spontaneous population activity between basal forebrain and auditory cortex. Frontiers in Neural Circuits 11:64. DOI: https://doi.org/10.3389/ fncir.2017.00064, PMID: 28959191

Yu¨ zgec¸ O¨ , Prsa M, Zimmermann R, Huber D. 2018. Pupil size coupling to cortical states protects the stability of deep sleep via parasympathetic modulation. Current Biology : CB 28:392–400. DOI: https://doi.org/10.1016/j. cub.2017.12.049, PMID: 29358069

Zhang Z, Zhong P, Hu F, Barger Z, Ren Y, Ding X, Li S, Weber F, Chung S, Palmiter RD, Dan Y. 2019. An excitatory circuit in the perioculomotor midbrain for Non-REM sleep control. Cell 177:1293–1307. DOI: https:// doi.org/10.1016/j.cell.2019.03.041, PMID: 31031008

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る