リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Am80, a retinoic acid receptor agonist, activates the cardiomyocyte cell cycle and enhances engraftment in the heart」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Am80, a retinoic acid receptor agonist, activates the cardiomyocyte cell cycle and enhances engraftment in the heart

Kasamoto, Manabu Funakoshi, Shunsuke Hatani, Takeshi Okubo, Chikako Nishi, Yohei Tsujisaka, Yuta Nishikawa, Misato Narita, Megumi Ohta, Akira Kimura, Takeshi Yoshida, Yoshinori 京都大学 DOI:10.1016/j.stemcr.2023.06.006

2023.08

概要

Human induced pluripotent stem cell-derived (hiPSC) cardiomyocytes are a promising source for regenerative therapy. To realize this therapy, however, their engraftment potential after their injection into the host heart should be improved. Here, we established an efficient method to analyze the cell cycle activity of hiPSC cardiomyocytes using a fluorescence ubiquitination-based cell cycle indicator (FUCCI) system. In vitro high-throughput screening using FUCCI identified a retinoic acid receptor (RAR) agonist, Am80, as an effective cell cycle activator in hiPSC cardiomyocytes. The transplantation of hiPSC cardiomyocytes treated with Am80 before the injection significantly enhanced the engraftment in damaged mouse heart for 6 months. Finally, we revealed that the activation of endogenous Wnt pathways through both RARA and RARB underlies the Am80-mediated cell cycle activation. Collectively, this study highlights an efficient method to activate cell cycle in hiPSC cardiomyocytes by Am80 as a means to increase the graft size after cell transplantation into a damaged heart.

この論文で使われている画像

関連論文

参考文献

Alvarez, R., Jr., Wang, B.J., Quijada, P.J., Avitabile, D., Ho, T., Shaitrit, M., Chavarria, M., Firouzi, F., Ebeid, D., Monsanto, M.M., et al.

(2019). Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). J. Mol. Cell. Cardiol. 127,

154–164.

Ballotti, R., Cheli, Y., and Bertolotto, C. (2020). The complex relationship between MITF and the immune system: a Melanoma

ImmunoTherapy (response) Factor? Mol. Cancer 19, 170.

Bargehr, J., Ong, L.P., Colzani, M., Davaapil, H., Hofsteen, P., Bhandari, S., Gambardella, L., Le Nove`re, N., Iyer, D., Sampaziotis, F.,

et al. (2019). Epicardial cells derived from human embryonic

stem cells augment cardiomyocyte-driven heart regeneration.

Nat. Biotechnol. 37, 895–906.

Bilbija, D., Haugen, F., Sagave, J., Baysa, A., Bastani, N., Levy, F.O.,

¨ , A., Blomhoff, R., and Valen, G. (2012). Retinoic acid signalSirsjo

ling is activated in the postischemic heart and may influence remodelling. PLoS One 7, e44740.

Brade, T., Kumar, S., Cunningham, T.J., Chatzi, C., Zhao, X., Cavallero, S., Li, P., Sucov, H.M., Ruiz-Lozano, P., and Duester, G.

(2011). Retinoic acid stimulates myocardial expansion by

Stem Cell Reports j Vol. 18 j 1672–1685 j August 8, 2023 1683

induction of hepatic erythropoietin which activates epicardial

Igf2. Development 138, 139–148.

C/EBP transcription factors mediate epicardial activation during

heart development and injury. Science 338, 1599–1603.

Buikema, J.W., Lee, S., Goodyer, W.R., Maas, R.G., Chirikian, O., Li,

G., Miao, Y., Paige, S.L., Lee, D., Wu, H., et al. (2020). Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive

Expansion of Functional Human iPSC-Derived Cardiomyocytes.

Cell Stem Cell 27, 50–63.e5.

Karner, C.M., Das, A., Ma, Z., Self, M., Chen, C., Lum, L., Oliver, G.,

and Carroll, T.J. (2011). Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138, 1247–1257.

Cao, J., and Poss, K.D. (2018). The epicardium as a hub for heart

regeneration. Nat. Rev. Cardiol. 15, 631–647.

Choi, W.Y., Gemberling, M., Wang, J., Holdway, J.E., Shen, M.C.,

Karlstrom, R.O., and Poss, K.D. (2013). In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart

regeneration. Development 140, 660–666.

Chong, J.J.H., Yang, X., Don, C.W., Minami, E., Liu, Y.W., Weyers,

J.J., Mahoney, W.M., Van Biber, B., Cook, S.M., Palpant, N.J., et al.

(2014). Human embryonic-stem-cell-derived cardiomyocytes

regenerate non-human primate hearts. Nature 510, 273–277.

Colbert, M.C., Hall, D.G., Kimball, T.R., Witt, S.A., Lorenz, J.N.,

Kirby, M.L., Hewett, T.E., Klevitsky, R., and Robbins, J. (1997). Cardiac compartment-specific overexpression of a modified retinoic

acid receptor produces dilated cardiomyopathy and congestive

heart failure in transgenic mice. J. Clin. Invest. 100, 1958–1968.

Daskalopoulos, E.P., and Blankesteijn, W.M. (2021). Effect of interventions in WNT signaling on healing of cardiac injury: a systematic review. Cells 10. https://doi.org/10.3390/cells10020207.

Dawson, K., Aflaki, M., and Nattel, S. (2013). Role of the WntFrizzled system in cardiac pathophysiology: a rapidly developing,

poorly understood area with enormous potential. J. Physiol. 591,

1409–1432.

˜oz, M.D., and Turner, M. (2018). Uncovering the Role of

Dı´az-Mun

RNA-Binding Proteins in Gene Expression in the Immune System.

Front. Immunol. 9, 1094.

Freyer, L., and Morrow, B.E. (2010). Canonical Wnt signaling modulates Tbx1, Eya1, and Six1 expression, restricting neurogenesis in

the otic vesicle. Dev. Dyn. 239, 1708–1722.

Funakoshi, S., Miki, K., Takaki, T., Okubo, C., Hatani, T., Chonabayashi, K., Nishikawa, M., Takei, I., Oishi, A., Narita, M., et al.

(2016). Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci. Rep. 6, 19111.

Kikuchi, K., Holdway, J.E., Major, R.J., Blum, N., Dahn, R.D., Begemann, G., and Poss, K.D. (2011). Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 20, 397–404.

Laflamme, M.A., Chen, K.Y., Naumova, A.V., Muskheli, V., Fugate,

J.A., Dupras, S.K., Reinecke, H., Xu, C., Hassanipour, M., Police, S.,

et al. (2007). Cardiomyocytes derived from human embryonic

stem cells in pro-survival factors enhance function of infarcted

rat hearts. Nat. Biotechnol. 25, 1015–1024.

Lavine, K.J., Yu, K., White, A.C., Zhang, X., Smith, C., Partanen, J.,

and Ornitz, D.M. (2005). Endocardial and epicardial derived FGF

signals regulate myocardial proliferation and differentiation

in vivo. Dev. Cell 8, 85–95.

Lee, J.H., Protze, S.I., Laksman, Z., Backx, P.H., and Keller, G.M.

(2017). Human Pluripotent Stem Cell-Derived Atrial and Ventricular Cardiomyocytes Develop from Distinct Mesoderm Populations.

Cell Stem Cell 21, 179–194.e4.

Lepilina, A., Coon, A.N., Kikuchi, K., Holdway, J.E., Roberts, R.W.,

Burns, C.G., and Poss, K.D. (2006). A dynamic epicardial injury

response supports progenitor cell activity during zebrafish heart

regeneration. Cell 127, 607–619.

Lescroart, F., Chabab, S., Lin, X., Rulands, S., Paulissen, C., Rodolosse, A., Auer, H., Achouri, Y., Dubois, C., Bondue, A., et al.

(2014). Early lineage restriction in temporally distinct populations

of Mesp1 progenitors during mammalian heart development. Nat.

Cell Biol. 16, 829–840.

Liu, Y.W., Chen, B., Yang, X., Fugate, J.A., Kalucki, F.A., FutakuchiTsuchida, A., Couture, L., Vogel, K.W., Astley, C.A., Baldessari, A.,

et al. (2018). Human embryonic stem cell-derived cardiomyocytes

restore function in infarcted hearts of non-human primates. Nat.

Biotechnol. 36, 597–605.

Masters, M., and Riley, P.R. (2014). The epicardium signals the way

towards heart regeneration. Stem Cell Res. 13, 683–692.

Guleria, R.S., Singh, A.B., Nizamutdinova, I.T., Souslova, T., Mohammad, A.A., Kendall, J.A., Jr., Baker, K.M., and Pan, J. (2013).

Activation of retinoid receptor-mediated signaling ameliorates diabetes-induced cardiac dysfunction in Zucker diabetic rats. J. Mol.

Cell. Cardiol. 57, 106–118.

Merki, E., Zamora, M., Raya, A., Kawakami, Y., Wang, J., Zhang, X.,

Burch, J., Kubalak, S.W., Kaliman, P., Izpisua Belmonte, J.C., et al.

(2005). Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc. Natl. Acad. Sci.

USA 102, 18455–18460.

Han, Y., Chen, A., Umansky, K.B., Oonk, K.A., Choi, W.Y., Dickson,

A.L., Ou, J., Cigliola, V., Yifa, O., Cao, J., et al. (2019). Vitamin D

Stimulates Cardiomyocyte Proliferation and Controls Organ Size

and Regeneration in Zebrafish. Dev. Cell 48, 853–863.e5.

Miki, K., Endo, K., Takahashi, S., Funakoshi, S., Takei, I., Katayama,

S., Toyoda, T., Kotaka, M., Takaki, T., Umeda, M., et al. (2015). Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches. Cell Stem Cell 16, 699–711.

Hashimoto, H., Yuasa, S., Tabata, H., Tohyama, S., Hayashiji, N.,

Hattori, F., Muraoka, N., Egashira, T., Okata, S., Yae, K., et al.

(2014). Time-lapse imaging of cell cycle dynamics during development in living cardiomyocyte. J. Mol. Cell. Cardiol. 72, 241–249.

Nakajima, Y. (2019). Retinoic acid signaling in heart development.

Genesis 57, e23300.

Huang, G.N., Thatcher, J.E., McAnally, J., Kong, Y., Qi, X., Tan, W.,

DiMaio, J.M., Amatruda, J.F., Gerard, R.D., Hill, J.A., et al. (2012).

1684 Stem Cell Reports j Vol. 18 j 1672–1685 j August 8, 2023

Oikonomopoulos, A., Kitani, T., and Wu, J.C. (2018). Pluripotent

Stem Cell-Derived Cardiomyocytes as a Platform for Cell Therapy

Applications: Progress and Hurdles for Clinical Translation. Mol.

Ther. 26, 1624–1634.

Ozhan, G., and Weidinger, G. (2015). Wnt/beta-catenin signaling

in heart regeneration. Cell Regen. 4, 3.

Pan, J., Guleria, R.S., Zhu, S., and Baker, K.M. (2014). Molecular

Mechanisms of Retinoid Receptors in Diabetes-Induced Cardiac

Remodeling. J. Clin. Med. 3, 566–594.

Perl, E., and Waxman, J.S. (2019). Reiterative Mechanisms of Retinoic Acid Signaling during Vertebrate Heart Development. J. Dev.

Biol. 7, 11.

Protze, S.I., Lee, J.H., and Keller, G.M. (2019). Human Pluripotent

Stem Cell-Derived Cardiovascular Cells: From Developmental

Biology to Therapeutic Applications. Cell Stem Cell 25, 311–327.

Romagnuolo, R., Masoudpour, H., Porta-Sa´nchez, A., Qiang, B.,

Barry, J., Laskary, A., Qi, X., Masse´, S., Magtibay, K., Kawajiri, H.,

et al. (2019). Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate the Infarcted Pig Heart but Induce Ventricular

Tachyarrhythmias. Stem Cell Rep. 12, 967–981.

Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama,

H., Osawa, H., Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H.,

et al. (2008). Visualizing spatiotemporal dynamics of multicellular

cell-cycle progression. Cell 132, 487–498.

Shiba, Y., Gomibuchi, T., Seto, T., Wada, Y., Ichimura, H., Tanaka,

Y., Ogasawara, T., Okada, K., Shiba, N., Sakamoto, K., et al.

(2016). Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388–391.

Song, Y., Lee, S., Kim, J.R., and Jho, E.H. (2018). Pja2 Inhibits Wnt/

beta-catenin Signaling by Reducing the Level of TCF/LEF1. Int. J.

Stem Cells 11, 242–247.

Uosaki, H., Cahan, P., Lee, D.I., Wang, S., Miyamoto, M., Fernandez, L., Kass, D.A., and Kwon, C. (2015). Transcriptional Landscape

of Cardiomyocyte Maturation. Cell Rep. 13, 1705–1716.

Uribe, V., Ramadass, R., Dogra, D., Rasouli, S.J., Gunawan, F., Nakajima, H., Chiba, A., Reischauer, S., Mochizuki, N., and Stainier,

D.Y.R. (2018). In vivo analysis of cardiomyocyte proliferation during trabeculation. Development 145, dev164194.

van Wijk, B., Gunst, Q.D., Moorman, A.F.M., and van den Hoff,

M.J.B. (2012). Cardiac regeneration from activated epicardium.

PLoS One 7, e44692.

Wang, J.L., Qi, Z., Li, Y.H., Zhao, H.M., Chen, Y.G., and Fu, W.

(2017). TGFbeta induced factor homeobox 1 promotes colorectal

cancer development through activating Wnt/beta-catenin

signaling. Oncotarget 8, 70214–70225.

ˆ .M., Figueira, A.C.M., Caiaffa, C.D.,

Xavier-Neto, J., Sousa Costa, A

Amaral, F.N.d., Peres, L.M.C., da Silva, B.S.P., Santos, L.N., Moise,

A.R., and Castillo, H.A. (2015). Signaling through retinoic acid receptors in cardiac development: Doing the right things at the right

times. Biochim. Biophys. Acta 1849, 94–111.

Zamora, M., Ma¨nner, J., and Ruiz-Lozano, P. (2007). Epicardiumderived progenitor cells require beta-catenin for coronary artery

formation. Proc. Natl. Acad. Sci. USA 104, 18109–18114.

Zhu, W., Zhao, M., Mattapally, S., Chen, S., and Zhang, J. (2018).

CCND2 Overexpression Enhances the Regenerative Potency of

Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes:

Remuscularization of Injured Ventricle. Circ. Res. 122, 88–96.

Stem Cell Reports j Vol. 18 j 1672–1685 j August 8, 2023 1685

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る