リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enzymatic and structural studies of GH family 87 α-1,3-glucanase from Paenibacillus glycanilyticus FH11」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enzymatic and structural studies of GH family 87 α-1,3-glucanase from Paenibacillus glycanilyticus FH11

INTUY Rattanaporn 立命館大学 DOI:info:doi/10.34382/00014045

2020.12.22

概要

α-1,3-Glucanase hydrolyzes α-1,3-glucan, an insoluble linear α-1,3-linked homopolymer of glucose that is found in the extracellular polysaccharides produced by oral Streptococcus mutans in dental plaque and fungal cell walls. This enzyme is expected to be of application in dental care and the development of fungal cell-wall lytic enzymes. In this study, two recombinant catalytic domains of α-1,3-glucanase isozymes, CatAglFH1 and CatAgl-FH2 from Paenibacillus glycanilyticus FH11, which is classified into glycoside hydrolase family 87, were prepared using a Brevibacillus choshinensis expression system and purified for enzymatic characterization and 3D structural analysis. CatAgl-FH1 and CatAgl-FH2, which consist of 574 and 580 amino acid residues, respectively, were purified. They showed specific activities of 0.70 U/mg and 0.77 U/mg, respectively. The molecular masses of both enzymes were estimated to be approximately 62 kDa by SDS-PAGE. Both recombinant enzymes exhibited the different properties in pH and temperature profiles. The optimal pH of CatAgl-FH1 and CatAgl-FH2 were 5.5 and 6.0, respectively. The optimal temperature of CatAgl-FH1 and CatAgl-FH2 were 60°C and 55°C, respectively. TLC analysis indicated that both recombinant enzymes exhibited substrate specificity towards α-1,3-glucan and showed endo-cleavage pattern. Major products of CatAgl-FH1 were di- and trisaccharide. In turns, the hydrolysis product of CatAgl-FH2 was mainly trisaccharide.

Both Agl-FH1 and Agl-FH2, the original enzymes, have multi-domain structure consisting of N-terminal substrate-binding domain and a C-terminal catalytic domain. The N-terminal of Agl-FH1 and Agl-FH2 showed each approximately 70% identity to the N-terminal moiety of Agl-KA from Bacillus circulans KA-304, and C-terminal of Agl-KA (CatAgl-KA) also exhibited highly similarity with CatAgl-FH2 sequence. Interestingly, the amino acid sequence of CatAgl-FH1 showed approximately 20% identity to CatAgl-KA and to those of the other known GH87 α-1,3-glucanases. No threedimensional structures of α-1,3-diglucanase has been available to date. Although crystal of full-length Agl-FH1 has not been obtained yet, crystals of Cat-Agl-FH1 were successfully prepared. The crystal structure of CatAgl-FH1 was analyzed by nativesingle-wavelength anomalous diffraction. The catalytic domain was composed of two modules, β-sandwich fold, and right-handed β-helix fold modules. The structure of βsandwich was similar to those of carbohydrate binding module (CBM) family 35 members. The crystal structure of CatAgl-FH1 were determined in complexed forms with or without oligosaccharides at 1.4 to 2.5 and 1.6 Å resolutions, respectively. The glycerolor α-1,3-diglucan (nigerose)-enzyme complex structures demonstrated that this βsandwich fold module was a novel carbohydrate binding module with the capabilities to bind saccharides and to promote the degradation of polysaccharides. The structure of inactive mutants in complexes with oligosaccharides showed that at least eight subsites for glucose binding are located in the active cleft of β-helix fold and the architecture of the active cleft was suitable for the recognition and hydrolysis of α-1,3-glucan with the inverting mechanism. The structural similarity with GH28 and GH49 enzymes and the site-directed mutagenesis indicate that three Asp residues, Asp1045, Asp1068, and Asp1069, are the most likely candidates for catalytic residues of Agl-FH1. It was also revealed that this enzyme hydrolyzed α-1,3-tetraglucan into glucose and α-1,3-triglucan with β-configuration at the reducing end by an inverting mechanism.

Both enzymes were tested to evaluate the capability of degrading or preventing for biofilm formed by S. mutans. Each enzyme was capable of preventing biofilm formation more than 70% in the culture medium at 16-h reaction time. The examination using laser scanning microscopy confirmed little biofilm adhere to surface of glass plate. In addition, both CatAgl-FH1 and CatAgl-FH2 degraded biofilm pre-formed on glass plate at 16 h with degradation efficiency of approximately 60% and 40%, respectively. The results showed that both enzymes have capability for dental care applications.

参考文献

Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. 2016. Microbial enzymes: industrial progress in 21st century. 3 Biotech. 6(2), 1–15.

Liu, L., Yang, H. & Shin, H. D. 2013. How to achieve high-level expression of microbial enzymes strategies and perspectives. Bioengineered. 4(4), 212–223.

Puetz, J., & Wurm, F. M. 2019. Recombinant Proteins for Industrial versus Pharmaceutical Purposes: A Review of Process and Pricing. Prcs. 7(8), 476.

Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V. & Henrissat, B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37, D233-8.

Sinnott, M. L. 1990. Catalytic mehcanism of enzyme glycosyl transfer. Chem. Rev. 1171-1202.

Davies, G., & Henrissat, B. 1995. Structures and mechanisms of glycosyl hydrolases. Struct. 3, 853-859.

Loesche, W. J. 1986. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 50, 353-380.

Yoshimi, A., Miyazawa, K., & Abe, K. 2017. Function and Biosynthesis of Cell Wall alpha-1,3-Glucan in Fungi. J. Fungi. (Basel) 3.

Flemming, H. C. & Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8(9), 623-633.

Bowen, W. H. & Koo, H. 2011. Biology of streptococcus mutans-derived glucosyltransferases: Role in extracellular matrix formation of cariogenic biofilms. Caries Res. 45(1), 69-86.

Puanglek, S., Kimura, S., Enomoto-Rogers, Y., Kabe, T., Yoshida, M., Wada, M. & Iwata, T. 2016. In vitro synthesis of linear α-1,3-glucan and chemical modification to ester derivatives exhibiting outstanding thermal properties. Sci. Rep. 6, 30479

Otsuka, R., Imai, Susumu, Murata, T., Nomura, Y., Okamoto, M., Tsumori, H., Kakuta, E., Hanada, N. & Momoi, Y. 2015. Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation. Microbiol. Immunol. 59, 28-36.

Pleszczyn´aska, M., Wiater, A. & Szczodrak, J. 2010. Mutanase from Paenibacillus sp. MP-1 produced inductively by fungal a-1,3-glucan and its potential for the degradation of mutan and Streptococcus mutans biofilm. Biotechnol. Lett. 32, 1699-1704.

Shimotsuura, I., Kigawa, H., Ohdera, M., Kuramitsu, H. K., & Nakashima, S. 2008. Biochemical and molecular characterization of a novel type of Mutanase from Paenibacillussp. strain RM1: identification of its mutan-binding domain, essential for degradation of Streptococcus mutans biofilms. Appl. Environ. Microbiol. 74, 2759-2765.

Suyotha, W., Yana, S., Takagi, K., Rattanakit-Chandet, N., Tachiki, T. & Wakayama, M. Domain structure and function of alpha-1,3-glucanase from Bacillus circulans KA-304, an enzyme essential for degrading basidiomycete cell walls. Biosci.

Biotechnol. Biochem. 2013. 77, 639-647. Wei, H., Scherer, M., Singh, A., Liese, R. & Fischer, F. 2001. Aspergillus nidulans a1,3-glucanase (Mutanase), mutA, is expressed during sexual development and mobilizes mutan. Fungal Genet. Biol. 34:217–227.

Fuglsang, C. C., Berka, R. M., Wahleitner, J. A., Kauppinen, S., Shuster, J. R., Ramussen, G., Halkier, T., Dalboge, H. & Henrissat, B. 2000. Biochemical analysis of recombinant fungal mutanasese: a newfamily of a-1,3-glucanases with novel carbohydrate-bindingdomains. J. Biol. Chem. 275, 2009–2018.

Hochstenbach, F., Klis, F. M., van den Ende, H., van Donselaar, E., Peters, P. J. & Klausner, R. D. 1998. Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Proc. Natl. Acad. Sci. USA. 95, 9161-9166.

Tsumori, H. & Kuramitsu, H. 1997. The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: Essential role of the GtfC enzyme. Oral Microbiol. Immunol. 12(5), 274–280.

Pleszczynska, M., Boguszewska, A., Tchórzewski, M., Wiater, A. & Szczodrak, J. 2012. Protein Expr. Purif. 86, 68-74.

Yano, S., Yamamoto, S., Toge, T., Wakayama, M. & Tachiki, T. 2003. Occurrence of a specific protein in Basidiomycetelytic enzyme preparation produced by Bacillus circulans KA-304 inductivelywith a cell-wall preparation of Schizophyllum commune. Biosci. Biotechnol. Biochem. 67:1976–1982

Forssten, S. D., Björklund, M. & Ouwehand, A. C. 2010. Streptococcus mutans, caries and simulation models. Nutrients. 2(3), 290–298.

Wiater, A., Janczarek, M. & Szczodrak, J. 2015. (1→3)-α-D-Glucan hydrolases in dental biofilm prevention and control: A review. Int. J. Biol. Macromol. 79, 761– 778.

Yakushiji, T., Inoue, M. & Koga, T. 1984. Inter-serotype comparison of polysaccharides produced by extracellular enzymes from Streptococcus mutans. Carbohydr Res.

Li, Y. H. & Bowden, G. H. 1994. Characteristics of accumulation of oral gram-positive bacteria on mucin-conditioned glass surfaces in a model system. Oral Microbiol Immunol. 9, 1-11

Zero, D. T., van Houte, J. & Russo, J. 1986. The intra-oral effect on enamel demineralization of extracellular matrix material synthesized from sucrose by Streptococcus mutans. J. Dent. Res. 65, 918-923

Suzuki, N., Yoshida, A. & Nakano, Y. 2005. Quantitative analysis of multi-species oral biofilms by TaqMan Real-Time PCR. Clin. Med. Res. 3, 176-185

Guggenheim, B. 1970. Enzymatic hydrolysis and structure of water-insoluble glucan produced by glucosyltransferases from a strain of Streptococcus mutans. Helv. Odontol. Acta. 14, Suppl 5:89.

Pleszczynska, M., Wiater, A. & Szczodrak, J. 2010. Mutanase from Paenibacillus sp. MP-1 produced inductively by fungal alpha-1,3-glucan and its potential for the degradation of mutan and Streptococcus mutans biofilm. Biotechnol. Lett. 32, 1699-1704.

Fujikawa, T., Sakaguchi, A., Nishizawa, Y., Kouzai, Y., Minami, E., Yano, S., Koga, H., Meshi, T. & Nishimura, M. 2012. Surface alpha-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog 8, e1002882.

Reese, A. J. & Doering, T. L. 2003. Cell wall alpha-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol. Microbiol. 50, 1401-1409.

Ait-Lahsen, H., Soler, A., Rey, M., de La Cruz, J., Monte, E. & Llobell, A. 2001. An antifungal exo-alpha-1,3-glucanase (AGN13.1) from the biocontrol fungus Trichoderma harzianum. Appl. Environ. Microbiol. 67, 5833-5839.

Fujikawa, T., Kuga, Y., Yano, S., Yoshimi, A., Tachiki, T., Abe, K., and Nishimura, M. (2009) Dynamics of cell wall components of Magnaporthe grisea during infectious structure development. Mol. Microbiol. 73, 553-570.

van Munster, J. M., Dobruchowska, J. M., Veloo, R., Dijkhuizen, L., and van der Maarel, M. J. (2015) Characterization of the starvation-induced chitinase CfcA and alpha-1,3-glucanase AgnB of Aspergillus niger. Appl. Microbiol. Biotechnol. 99, 2209-2223.

Wei, H., Scherer, M., Singh, A., Liese, R. & Fischer, R. 2001. Aspergillus nidulans alpha-1,3 glucanase (mutanase), mutA, is expressed during sexual development and mobilizes mutan. Fungal Genet Biol 34, 217-227.

Villalobos-Duno, H., San-Blas, G., Paulinkevicius, M., Sanchez-Martin, Y. & NinoVega, G. (2013) Biochemical characterization of Paracoccidioides brasiliensis alpha-1,3-glucanase Agn1p, and its functionality by heterologous Expression in Schizosaccharomyces pombe. PLoS One 8, e66853.

Fuglsang, C. C., Berka, R. M., Wahleithner, J. A., Kauppinen, S., Shuster, J. R., Rasmussen, G., Halkier, T., Dalboge, H. & Henrissat, B. (2000) Biochemical analysis of recombinant fungal mutanases. A new family of alpha1,3-glucanases with novel carbohydrate-binding domains. J. Biol. Chem. 275, 2009-2018.

Wang, L., Zhang, X. M. & Zhuang, W. Y. 2007. Penicillium macrosclerotiorum, a new species producing large sclerotia discovered in south China. Mycol. Res. 111, 1242-1248.

Grun, C. H., Dekker, N., Nieuwland, A. A., Klis, F. M., Kamerling, J. P., Vliegenthart, J. F. & Hochstenbach, F. (2006) Mechanism of action of the endo-(1-->3)-alphaglucanase MutAp from the mycoparasitic fungus Trichoderma harzianum. FEBS Lett. 580, 3780-3786.

Guggenheim, B. & Haller, R. 1972. Purification and properties of an alpha-(1-3) glucanohydrolase from Trichoderma harzianum. J. Dent. Res. 51, 394-402.

Yano, S., Wakayama, M. & Tachiki, T. 2006. Cloning and expression of an alpha-1,3- glucanase gene from Bacillus circulans KA-304: the enzyme participates in protoplast formation of Schizophyllum commune. Biosci. Biotechnol. Biochem. 70, 1754-1763.

Sumitomo, N., Saeki, K., Ozaki, K., Ito, S. & Kobayashi, T. 2007. Mutanase from a Paenibacillus isolate: nucleotide sequence of the gene and properties of recombinant enzymes. Biochim. Biophys. Acta. 1770, 716-724.

Hakamada, Y., Sumitomo, N., Ogawa, A., Kawano, T., Saeki, K., Ozaki, K., Ito, S. & Kobayashi, T. 2008. Nucleotide and deduced amino acid sequences of mutanaselike genes from Paenibacillus isolates: proposal of a new family of glycoside hydrolases. Biochimie. 90, 525-533.

Suyotha, W., Yano, S., Itoh, T., Fujimoto, H., Hibi, T., Tachiki, T., and Wakayama, M. 2014. Characterization of alpha-1,3-glucanase isozyme from Paenibacillus glycanilyticus FH11 in a new subgroup of family 87 alpha-1,3-glucanase. J. Biosci. Bioeng. 118, 378-385.

Suyotha, W., Fujiki, H., Cherdvorapong, V., Takagi, K., Yano, S., and Wakayama, M. 2017. A novel thermostable alpha-1,3-glucanase from Streptomyces thermodiastaticus HF 3-3. J. Gen. Appl. Microbiol. 63, 296-304.

Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490-495.

Suyotha, W., Yano, S., Takagi, K., Rattanakit-Chandet, N., Tachiki, T. & Wakayama, M. 2013. Domain structure and function of alpha-1,3-glucanase from Bacillus circulans KA-304, an enzyme essential for degrading basidiomycete cell walls. Biosci. Biotechnol. Biochem. 77, 639-647.

Yano, S., Suyotha, W., Zanma, S., Konno, H., Cherdvorapong, V. & Wakayama, M. 2018. Deletion of uncharacterized domain from alpha-1,3-glucanase of Bacillus circulans KA-304 enhances heterologous enzyme production in Escherichia coli. J. Gen. Appl. Microbiol. 64, 212-220.

Cherdvorapong, V., Fujiki, H., Suyotha, W., Takeda, Y., Yano, S., Takagi, K. & Wakayama, M. 2018. Enzymatic and molecular characterization of alpha-1,3- glucanase (AglST2) from Streptomyces thermodiastaticus HF3-3 and its relation with alpha-1,3-glucanase HF65 (AglST1). J. Gen. Appl. Microbiol.

Yano, S., Honda, A., Rattanakit, N., Noda, Y., Wakayama, M., Plikomol, A. & Tachiki, T. 2008. Cloning and expression of chitinase A gene from Streptomyces cyaneus SP-27: the enzyme participates in protoplast formation of Schizophyllum commune. Biosci. Biotechnol. Biochem. 72, 1853-1859.

Yano, S., Honda, A., Rattanakit-Chandet, N., Noda, Y., Wakayama, M., Plikomol, A. & Tachiki, T. 2009. Role of chitin binding domain of chitinase A of Streptomyces cyaneus SP-27 in protoplast formation from Schizophyllum commune. Biosci. Biotechnol. Biochem. 73, 733-735.

Yano, S., Rattanakit, N., Honda, A., Noda, Y., Wakayama, M., Plikomol, A. & Tachiki, T. 2008. Purification and characterization of chitinase A of Streptomyces cyaneus SP-27: an enzyme participates in protoplast formation from Schizophyllum commune mycelia. Biosci. Biotechnol. Biochem. 72, 54-61.

Wasser, S. P. 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 60, 258-274

Suyotha, W., Yano, S. & Wakayama, M. 2016. alpha-1,3-Glucanase: present situation and prospect of research. World J. Microbiol. Biotechnol. 32, 30.

Fujimoto, Z., Suzuki, N., Kishine, N., Ichinose, H., Momma, M., Kimura, A. & Funane, K. 2017. Carbohydrate-binding architecture of the multi-modular alpha-1,6- glucosyltransferase from Paenibacillus sp. 598K, which produces alpha-1,6- glucosyl-alpha-glucosaccharides from starch. Biochem J 474, 2763-2778.

Suzuki, N., Fujimoto, Z., Kim, Y. M., Momma, M., Kishine, N., Suzuki, R., Suzuki, S., Kitamura, S., Kobayashi, M., Kimura, A. & Funane, K. 2014. Structural elucidation of the cyclization mechanism of alpha-1,6-glucan by Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase. J Biol Chem 289, 12040-12051.

Correia, M. A., Abbott, D. W., Gloster, T. M., Fernandes, V. O., Prates, J. A., Montanier, C., Dumon, C., Williamson, M. P., Tunnicliffe, R. B., Liu, Z., Flint, J. E., Davies, G. J., Henrissat, B., Coutinho, P. M., Fontes, C. M. & Gilbert, H. J. 2010. Signature active site architectures illuminate the molecular basis for ligand specificity in family 35 carbohydrate binding module. Biochemistry. 49, 6193-6205.

Abbott, D. W. & van Bueren, A. L. 2014. Using structure to inform carbohydrate binding module function. Curr. Opin. Struct. Biol. 28, 32-40.

Light, S. H., Cahoon, L. A., Mahasenan, K. V., Lee, M., Boggess, B., Halavaty, A. S., Mobashery, S., Freitag, N. E. & Anderson, W. F. 2017. Transferase Versus Hydrolase: The Role of Conformational Flexibility in Reaction Specificity. Struct. 25, 295-304.

Yoder, M. D., Keen, N. T. & Jurnak, F. 1993. New domain motif: the structure of pectate lyase C, a secreted plant virulence factor. Science 260, 1503-1507

Pickersgill, R., Smith, D., Worboys, K. & Jenkins, J. 1998. Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora. J. Biol. Chem. 273, 24660-24664.

Rozeboom, H. J., Bjerkan, T. M., Kalk, K. H., Ertesvag, H., Holtan, S., Aachmann, F. L., Valla, S. & Dijkstra, B. W. 2008. Structural and mutational characterization of the catalytic A-module of the mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii. J. Biol. Chem. 283, 23819-23828.

Shimizu, T., Nakatsu, T., Miyairi, K., Okuno, T. & Kato, H. 2002. Active-site architecture of endopolygalacturonase I from Stereum purpureum revealed by crystal structures in native and ligand-bound forms at atomic resolution. Biochemistry. 41, 6651-6659.

Mizuno, M., Koide, A., Yamamura, A., Akeboshi, H., Yoshida, H., Kamitori, S., Sakano, Y., Nishikawa, A. & Tonozuka, T. 2008. Crystal structure of Aspergillus niger isopullulanase, a member of glycoside hydrolase family 49. J. Mol. Biol. 376, 210-220.

Larsson, A. M., Andersson, R., Stahlberg, J., Kenne, L. & Jones, T. A. 2003. Dextranase from Penicillium minioluteum: reaction course, crystal structure, and product complex. Struct. 11, 1111-1121.

Bianchetti, C. M., Takasuka, T. E., Deutsch, S., Udell, H. S., Yik, E. J., Bergeman, L. F. & Fox, B. G. 2015. Active site and laminarin binding in glycoside hydrolase family 55. J. Biol. Chem. 290, 11819-11832.

Rebuffet, E., Barbeyron, T., Jeudy, A., Jam, M., Czjzek, M. & Michel, G. 2010. Identification of catalytic residues and mechanistic analysis of family GH82 iotacarrageenases. Biochem. 49, 7590-7599.

Davies, G. J., Wilson, K. S. & Henrissat, B. 1997. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 321 ( Pt 2), 557-559.

Cremer, D. & Pople, J. A. 1975. General definition of ring puckering coordinates. Journal of the American Chemical Society 97, 1354-1358.

Janecek, S. & Gabrisko, M. 2016. Remarkable evolutionary relatedness among the enzymes and proteins from the alpha-amylase family. Cell. Mol. Life. Sci. 73, 2707-2725.

Davies, G. J., Planas, A. & Rovira, C. 2012. Conformational analyses of the reaction coordinate of glycosidases. Acc. Chem. Res. 45, 308-316.

McCarter, J. D. & Withers, S. G. 1994. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 4, 885-892.

Horn, S. J., Sorlie, M., Varum, K. M., Valjamae, P., and Eijsink, V. G. 2012. Measuring processivity. Methods Enzymol. 510, 69-95.

Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. & Bairoch, A. 2005. Protein Identification and Analysis Tools on the ExPASy Server, Humana Press.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.

Kabsch, W. 2010. Xds. Acta. Crystallogr. D Biol. Crystallogr. 66, 125-132.

Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326.

Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. & Zwart, P. H. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta. Crystallogr. D Biol. Crystallogr. 66, 213-221.

Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson, K. S. 2011. Overview of the CCP4 suite and current developments. Acta. Crystallogr. D Biol. Crystallogr. 67, 235-242.

McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658- 674.

Dietmann, S., Park, J., Notredame, C., Heger, A., Lappe, M. & Holm, L. 2001. A fully automatic evolutionary classification of protein folds: Dali Domain Dictionary version 3. Nucleic. Acids. Res. 29, 55-57.

参考文献をもっと見る