リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Construction of Fluorescent Immunosensor Quenchbody to Detect His-Tagged Recombinant Proteins Produced in Bioprocess」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Construction of Fluorescent Immunosensor Quenchbody to Detect His-Tagged Recombinant Proteins Produced in Bioprocess

ネイ セツジョウ 安田 貴信 北口 哲也 上田 宏 Xuerao Ning Takanobu Yasuda Tetsuya Kitaguchi Hiroshi Ueda 東京工業大学 DOI:https://doi.org/10.3390/s21154993

2021.07.22

概要

With the widespread application of recombinant DNA technology, many useful substances are produced by bioprocesses. For the monitoring of the recombinant protein production process, most of the existing technologies are those for the culture environment (pH, O2 , etc.). However, the production status of the target protein can only be known after the subsequent separation and purification process. To speed up the monitoring of the production process and screening of the higher-yield target protein variants, here we developed an antibody-based His-tag sensor Quenchbody (Q-body), which can quickly detect the C-terminally His-tagged recombinant protein produced in the culture medium. Compared with single-chain Fv-based Q-body having one dye, the Fabbased Q-body having two dyes showed a higher response. In addition, not only was fluorescence response improved but also detection sensitivity by the mutations of tyrosine to tryptophan in the heavy chain CDR region. Moreover, the effect of the mutations on antigen-binding was successfully validated by molecular docking simulation by CDOCKER. Finally, the constructed Q-body was successfully applied to monitor the amount of anti-SARS CoV-2 nanobody secreted into the Brevibacillus culture media.

参考文献

1. Biechele, P.; Busse, C.; Solle, D.; Scheper, T.; Reardon, K. Sensor systems for bioprocess monitoring. Eng. Life Sci. 2015, 15, 469–488. [CrossRef]

2. Fernández-Robledo, J.A.; Vasta, G.R. Production of recombinant proteins from protozoan parasites. Trends Parasitol. 2010, 26, 244–254. [CrossRef] [PubMed]

3. Loughran, S.T.; Bree, R.T.; Walls, D. Purification of polyhistidine-tagged proteins. In Protein Chromatography; Springer: Berlin/Heidelberg, Germany, 2017; pp. 275–303.

4. Raducanu, V.-S.; Isaioglou, I.; Raducanu, D.-V.; Merzaban, J.S.; Hamdan, S.M. Simplified detection of polyhistidine-tagged proteins in gels and membranes using a UV-excitable dye and a multiple chelator head pair. J. Biol. Chem. 2020, 295, 12214–12223. [CrossRef]

5. Kryšt ˚ufek, R.; Šácha, P. An iBody-based lateral flow assay for semi-quantitative determination of His-tagged protein concentration. J. Immunol. Methods 2019, 473, 112640. [CrossRef] [PubMed]

6. Cao, Z.; Wang, S.; Liu, Z.; Xue, C.; Mao, X. A rapid, easy, and sensitive method for detecting His-tag-containing chitinase based on ssDNA aptamers and gold nanoparticles. Food Chem. 2020, 330, 127230. [CrossRef] [PubMed]

7. Kökpinar, Ö.; Walter, J.G.; Shoham, Y.; Stahl, F.; Scheper, T. Aptamer-based downstream processing of his-tagged proteins utilizing magnetic beads. Biotechnol. Bioeng. 2011, 108, 2371–2379. [CrossRef] [PubMed]

8. Kreisig, T.; Prasse, A.A.; Zscharnack, K.; Volke, D.; Zuchner, T. His-tag protein monitoring by a fast mix-and-measure immunoassay. Sci. Rep. 2014, 4, 1–5. [CrossRef] [PubMed]

9. Abe, R.; Ohashi, H.; Iijima, I.; Ihara, M.; Takagi, H.; Hohsaka, T.; Ueda, H. “Quenchbodies”: Quench-based antibody probes that show antigen-dependent fluorescence. J. Am. Chem. Soc. 2011, 133, 17386–17394. [CrossRef] [PubMed]

10. Dong, J.; Ueda, H. Recent Advances in Quenchbody, a Fluorescent Immunosensor. Sensors 2021, 21, 1223. [CrossRef]

11. Inoue, A.; Ohmuro-Matsuyama, Y.; Kitaguchi, T.; Ueda, H. Creation of a Nanobody-Based Fluorescent Immunosensor Mini Q-body for Rapid Signal-On Detection of Small Hapten Methotrexate. ACS Sens. 2020, 5, 3457–3464. [CrossRef]

12. Takahashi, R.; Yasuda, T.; Ohmuro-Matsuyama, Y.; Ueda, H. BRET Q-Body: A Ratiometric Quench-based Bioluminescent Immunosensor Made of Luciferase–Dye–Antibody Fusion with Enhanced Response. Anal. Chem. 2021, 93, 7571–7578. [CrossRef]

13. Kaufmann, M.; Lindner, P.; Honegger, A.; Blank, K.; Tschopp, M.; Capitani, G.; Plückthun, A.; Grütter, M.G. Crystal structure of the anti-His tag antibody 3D5 single-chain fragment complexed to its antigen. J. Mol. Biol. 2002, 318, 135–147. [CrossRef]

14. Yamagata, H.; Nakahama, K.; Suzuki, Y.; Kakinuma, A.; Tsukagoshi, N.; Udaka, S. Use of Bacillus brevis for efficient synthesis and secretion of human epidermal growth factor. Proc. Natl. Acad. Sci. USA 1989, 86, 3589–3593. [CrossRef]

15. Van der Linden, R.; Frenken, L.; De Geus, B.; Harmsen, M.; Ruuls, R.; Stok, W.; De Ron, L.; Wilson, S.; Davis, P.; Verrips, C. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim. Biophys. Acta-Protein Struct. Mol. Enzymol. 1999, 1431, 37–46. [CrossRef]

16. Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hammers, C.; Songa, E.B.; Bendahman, N.; Hammers, R. Naturally occurring antibodies devoid of light chains. Nature 1993, 363, 446–448. [CrossRef] [PubMed]

17. Frenken, L.G.; Van Der Linden, R.H.; Hermans, P.W.; Bos, J.W.; Ruuls, R.C.; De Geus, B.; Verrips, C.T. Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J. Biotechnol. 2000, 78, 11–21. [CrossRef]

18. Jeong, H.-J.; Kawamura, T.; Dong, J.; Ueda, H. Q-Bodies from recombinant single-chain Fv fragment with better yield and expanded palette of fluorophores. ACS Sens. 2016, 1, 88–94. [CrossRef]

19. Ohmuro-Matsuyama, Y.; Ueda, H. Homogeneous noncompetitive luminescent immunodetection of small molecules by ternary protein fragment complementation. Anal. Chem. 2018, 90, 3001–3004. [CrossRef] [PubMed]

20. Henkel, M.; Röckendorf, N.; Frey, A. Selective and efficient cysteine conjugation by maleimides in the presence of phosphine reductants. Bioconjug. Chem. 2016, 27, 2260–2265. [CrossRef]

21. Wu, G.; Robertson, D.H.; Brooks, C.L., III; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER—A CHARMm-based MD docking algorithm. J. Comp. Chem. 2003, 24, 1549–1562. [CrossRef]

22. Kabat, E.A.; Wu, T.T.; Perry, H.M.; Gottesman, K.S.; Foeller, C. Sequences of Proteins of Immunological Interest, 5th ed.; U.S. Government Printing Office: Bethesda, MD, USA, 1991.

23. Jia, Q.; Luo, Y.E. The selective roles of chaperone systems on over-expression of human-like collagen in recombinant Escherichia coli. J. Ind. Microbiol. Biotechnol. 2014, 41, 1667–1675. [CrossRef] [PubMed]

24. Nishihara, K.; Kanemori, M.; Kitagawa, M.; Yanagi, H.; Yura, T. Chaperone coexpression plasmids: Differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 1998, 64, 1694–1699. [CrossRef] [PubMed]

25. Rampogu, S.; Rampogu Lemuel, M. Network Based Approach in the Establishment of the Relationship between Type 2 Diabetes Mellitus and Its Complications at the Molecular Level Coupled with Molecular Docking Mechanism. Biomed. Res. Int. 2016, 2016, 6068437. [CrossRef] [PubMed]

参考文献をもっと見る