リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Innovative Preparation of Biopharmaceuticals Using Transglycosylation Activity of Microbial Endoglycosidases」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Innovative Preparation of Biopharmaceuticals Using Transglycosylation Activity of Microbial Endoglycosidases

Katoh, Toshihiko Yamamoto, Kenji 京都大学 DOI:10.5458/jag.jag.jag-2020_0013

2021.03.11

概要

Most functional biopharmaceuticals such as antibodies are glycoproteins carrying N-linked oligosaccharides (N-glycans). In animal cells, these glycans are generally expressed as heterogeneous glycoforms that are difficult to separate into a pure form. The structure of these glycans directly affects several biological aspects of the glycoproteins, especially binding affinity. Therefore, the preparation of glycoproteins with well-defined and homogeneous glycoforms is necessary for functional studies and improved efficacy, particularly for biopharmaceuticals. This review describes the recent remarkable progress in the development and production of biopharmaceutical glycan-modified antibodies, through the use of glycan remodeling using microbial endoglycosidases and sophisticated glycoengineering techniques utilizing microbial enzymatic reaction mechanisms.

この論文で使われている画像

参考文献

1)

2)

3)

4)

5)

A. Beck, T. Wurch, C. Bailly, and N. Corvaia: Strategies

and challenges for the next generation of therapeutic anti‐

bodies. Nat. Rev. Immunol., 10, 345–352 (2010).

F.C. Breedveld: Therapeutic monoclonal antibodies. Lan‐

cet (London, England), 355, 735–740 (2000).

T. Mizushima, H. Yagi, E. Takemoto, M. Shibata-Koyama,

Y. Isoda, S. Iida, K. Masuda, M. Satoh, and K. Kato: Struc‐

tural basis for improved efficacy of therapeutic antibodies

on defucosylation of their Fc glycans. Genes Cells, 16,

1071–1080 (2011).

X. Li and R.P. Kimberly: Targeting the Fc receptor in

autoimmune disease. Exp. Opin. Ther. Targets, 18, 335–

350 (2014).

V.R. Gómez Román, J.C. Murray, and L.M. Weiner: Chap‐

ter 1 - Antibody-Dependent Cellular Cytotoxicity (ADCC).

in Antibody Fc: Linking Adaptive and Innate Immunity,

M.E. Ackerman and F. Nimmerjahn, eds., Academic Press,

Boston, pp. 1–27 (2014).

6) X. Wang, M. Mathieu, and R.J. Brezski: IgG Fc engineer‐

ing to modulate antibody effector functions. Protein Cell,

9, 63–73 (2018).

7) R.L. Shields, J. Lai, R. Keck, L.Y. O’Connell, K. Hong,

Y.G. Meng, S.H.A. Weikert, and L.G. Presta: Lack of fu‐

cose on human IgG1 N-linked oligosaccharide improves

binding to human Fcgamma RIII and antibody-dependent

cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).

8) R. Jefferis: Glycosylation as a strategy to improve anti‐

body-based therapeutics. Nat. Rev. Drug Discov., 8, 226–

234 (2009).

9) N. Washburn, I. Schwab, D. Ortiz, et al.: Controlled tet‐

ra-Fc sialylation of IVIg results in a drug candidate with

consistent enhanced anti-inflammatory activity. Proc. Natl.

Acad. Sci. USA, 112, E1297–E1306 (2015).

10) R. Niwa, E. Shoji-Hosaka, M. Sakurada, T. Shinkawa, K.

Uchida, K. Nakamura, K. Matsushima, R. Ueda, N. Hanai,

and K. Shitara: Defucosylated chimeric anti-CC chemo‐

kine receptor 4 IgG1 with enhanced antibody-dependent

cellular cytotoxicity shows potent therapeutic activity to

T-cell leukemia and lymphoma. Cancer Res., 64, 2127–

2133 (2004).

11) A.J. Fairbanks: The ENGases: versatile biocatalysts for the

production of homogeneous N-linked glycopeptides and

glycoproteins. Chem. Soc. Rev., 46, 5128–5146 (2017).

12) K. Yamamoto: Endo-enzymes, in Glycosci. Biol. Med., eds.

N. Taniguchi, T. Endo, G.W. Hart, P.H. Seeberger, and

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

J. Appl. Glycosci., Vol. 68, No. 1 (2021)

C.-H. Wong , Springer Japan, Tokyo, pp. 391–399 (2015).

13) A. Kobata: Use of endo- and exoglycosidases for struc‐

tural studies of glycoconjugates. Anal. Biochem., 100, 1–

14 (1979).

14) J. Edelman: The formation of oligosaccharides by enzymic

transglycosylation. Adv. Enzymol. Relat. Subj. Biochem.,

17, 189–232 (1956).

15) J.R. Rich and S.G. Withers: Emerging methods for the pro‐

duction of homogeneous human glycoproteins. Nat. Chem.

Biol., 5, 206–215 (2009).

16) V. Lombard, H. Golaconda Ramulu, E. Drula, P.M. Cou‐

tinho, and B. Henrissat: The carbohydrate-active enzymes

database (CAZy) in 2013. Nucleic Acids Res., 42, D490–

495 (2014).

17) A.L. Tarentino, T.H.J. Plummer, and F. Maley: A re-evalu‐

ation of the oligosaccharide sequence associated with oval‐

bumin. J. Biol. Chem., 247, 2629–2631 (1972).

18) J.H. Elder and S. Alexander: Endo-beta-N-acetylglucosa‐

minidase F: endoglycosidase from Flavobacterium me‐

ningosepticum that cleaves both high-mannose and com‐

plex glycoproteins. Proc. Natl. Acad. Sci. USA, 79, 4540–

4544 (1982).

19) M. Collin and A. Olsén: EndoS, a novel secreted protein

from Streptococcus pyogenes with endoglycosidase activi‐

ty on human IgG. EMBO J., 20, 3046–3055 (2001).

20) S. Kadowaki, K. Yamamoto, M. Fujisaki, K. Izumi, T. To‐

chikura, and T. Yokoyama: Purification and characteriza‐

tion of a novel fungal endo-beta-N-acetylglucosaminidase

acting on complex oligosaccharides of glycoproteins. Ag‐

ric. Biol. Chem., 54, 97–106 (1990).

21) K. Takegawa, M. Nakoshi, S. Iwahara, K. Yamamoto, and

T. Tochikura: Induction and purification of endo-beta-Nacetylglucosaminidase from Arthrobacter protophormiae

grown in ovalbumin. Appl. Environ. Microbiol., 55, 3107–

3112 (1989).

22) T. Muramatsu: Demonstration of an endo-glycosidase

acting on a glycoprotein. J. Biol. Chem., 246, 5535–

5537 (1971).

23) T. Kato, K. Fujita, M. Takeuchi, K. Kobayashi, S. Natsuka,

K. Ikura, H. Kumagai, and K. Yamamoto: Identification

of an endo-beta-N-acetylglucosaminidase gene in Caeno‐

rhabditis elegans and its expression in Escherichia coli.

Glycobiology, 12, 581–587 (2002).

24) Y. Eshima, Y. Higuchi, T. Kinoshita, S.-I. Nakakita, and

K. Takegawa: Transglycosylation activity of glycosynthase

mutants of endo-β-N-acetylglucosaminidase from Copri‐

nopsis cinerea. PLoS One, 10, e0132859 (2015).

25) T. Suzuki, K. Yano, S. Sugimoto, K. Kitajima, W.J. Len‐

narz, S. Inoue, Y. Inoue, and Y. Emori: Endo-beta-N-ace‐

tylglucosaminidase, an enzyme involved in processing of

free oligosaccharides in the cytosol. Proc. Natl. Acad. Sci.

USA, 99, 9691–9696 (2002).

26) J.Q. Fan, M.S. Quesenberry, K. Takegawa, S. Iwahara, A.

Kondo, I. Kato, and Y.C. Lee: Synthesis of neoglycocon‐

jugates by transglycosylation with Arthrobacter protophor‐

miae endo-beta-N-acetylglucosaminidase. Demonstration

of a macro-cluster effect for mannose-binding proteins. J.

Biol. Chem., 270, 17730–17735 (1995).

27) K. Yamamoto, S. Kadowaki, J. Watanabe, and H. Ku‐

28)

29)

30)

31)

32)

33)

34)

35)

36)

37)

38)

39)

40)

41)

magai: Transglycosylation activity of Mucor hiemalis en‐

do-beta-N-acetylglucosaminidase which transfers complex

oligosaccharides to the N-acetylglucosamine moieties of

peptides. Biochem. Biophys. Res. Commun., 203, 244–252

(1994).

C.S. Rye and S.G. Withers: Glycosidase mechanisms. Curr.

Opin. Chem. Biol., 4, 573–580 (2000).

D.E. Koshland Jr.: Stereochemistry and the mechanism of

enzymatic reactions. Biol. Rev., 28, 416–436 (1953).

B.L. Mark, D.J. Vocadlo, S. Knapp, B.L. Triggs-Raine,

S.G. Withers, and M.N. James: Crystallographic evidence

for substrate-assisted catalysis in a bacterial beta-hexosa‐

minidase. J. Biol. Chem., 276, 10330–10337 (2001).

M. Fujita, S. Shoda, K. Haneda, T. Inazu, K. Takegawa,

and K. Yamamoto: A novel disaccharide substrate hav‐

ing 1,2-oxazoline moiety for detection of transglycosylat‐

ing activity of endoglycosidases. Biochim. Biophys. Acta,

1528, 9–14 (2001).

T.W.D.F. Rising, T.D.W. Claridge, N. Davies, D.P. Gam‐

blin, J.W.B. Moir, and A.J. Fairbanks: Synthesis of N-gly‐

can oxazolines: donors for endohexosaminidase catalysed

glycosylation. Carbohydr. Res., 341, 1574–1596 (2006).

P. Priyanka and A.J. Fairbanks: Synthesis of a hybrid type

N-glycan heptasaccharide oxazoline for Endo M catalysed

glycosylation. Carbohydr. Res., 426, 40–45 (2016).

B. Li, Y. Zeng, S. Hauser, H. Song, and L.-X. Wang:

Highly efficient endoglycosidase-catalyzed synthesis of

glycopeptides using oligosaccharide oxazolines as donor

substrates. J. Am. Chem. Soc., 127, 9692–9693 (2005).

T.W.D.F. Rising, T.D.W. Claridge, J.W.B. Moir, and A.J.

Fairbanks: Endohexosaminidase M: exploring and exploit‐

ing enzyme substrate specificity. ChemBioChem, 7, 1177–

1180 (2006).

M. Umekawa, W. Huang, B. Li, K. Fujita, H. Ashida,

L.-X. Wang, and K. Yamamoto: Mutants of Mucor hie‐

malis endo-beta-N-acetylglucosaminidase show enhanced

transglycosylation and glycosynthase-like activities. J.

Biol. Chem., 283, 4469–4479 (2008).

M. Umekawa, C. Li, T. Higashiyama, W. Huang, H.

Ashida, K. Yamamoto, and L.-X. Wang: Efficient glyco‐

synthase mutant derived from Mucor hiemalis endo-be‐

ta-N-acetylglucosaminidase capable of transferring oligo‐

saccharide from both sugar oxazoline and natural N-gly‐

can. J. Biol. Chem., 285, 511–521 (2010).

J.J. Goodfellow, K. Baruah, K. Yamamoto, C. Bonomelli,

B. Krishna, D.J. Harvey, M. Crispin, C.N. Scanlan, and

B.G. Davis: An endoglycosidase with alternative glycan

specificity allows broadened glycoprotein remodelling. J.

Am. Chem. Soc., 134, 8030–8033 (2012).

J.P. Giddens, J.V. Lomino, M.N. Amin, and L.-X. Wang:

Endo-F3 glycosynthase mutants enable chemoenzymatic

synthesis of core-fucosylated triantennary complex type

glycopeptides and glycoproteins. J. Biol. Chem., 291,

9356–9370 (2016).

Y. Wei, C. Li, W. Huang, B. Li, S. Strome, and L.-X.

Wang: Glycoengineering of human IgG1-Fc through com‐

bined yeast expression and in vitro chemoenzymatic glyco‐

sylation. Biochemistry, 47, 10294–10304 (2008).

G. Zou, H. Ochiai, W. Huang, Q. Yang, C. Li, and L.-X.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Katoh et al.: Innovative Preparation of Biopharmaceuticals Using Microbial Endoglycosidases

42)

43)

44)

45)

46)

47)

48)

49)

50)

51)

Wang: Chemoenzymatic synthesis and Fcγ receptor bind‐

ing of homogeneous glycoforms of antibody Fc domain.

Presence of a bisecting sugar moiety enhances the affinity

of Fc to FcγIIIa receptor. J. Am. Chem. Soc., 133, 18975–

18991 (2011).

S.-Q. Fan, W. Huang, and L.-X. Wang: Remarkable trans‐

glycosylation activity of glycosynthase mutants of endo-D,

an endo-β-N-acetylglucosaminidase from Streptococcus

pneumoniae. J. Biol. Chem., 287, 11272–11281 (2012).

W. Huang, J. Giddens, S.-Q. Fan, C. Toonstra, and L.-X.

Wang: Chemoenzymatic glycoengineering of intact IgG

antibodies for gain of functions. J. Am. Chem. Soc., 134,

12308–12318 (2012).

C.-W. Lin, M.-H. Tsai, S.-T. Li, et al.: A common gly‐

can structure on immunoglobulin G for enhancement of

effector functions. Proc. Natl. Acad. Sci. USA, 112, 10611–

10616 (2015).

T.B. Parsons, W.B. Struwe, J. Gault, K. Yamamoto, T.A.

Taylor, R. Raj, K. Wals, S. Mohammed, C.V. Robinson,

J.L.P. Benesch, and B.G. Davis: Optimal synthetic glyco‐

sylation of a therapeutic antibody. Angew. Chemie Int. Ed.,

2361–2367 (2016).

J. Sjögren, W.B. Struwe, E.F.J. Cosgrave, P.M. Rudd, M.

Stervander, M. Allhorn, A. Hollands, V. Nizet, and M.

Collin: EndoS2 is a unique and conserved enzyme of sero‐

type M49 group A Streptococcus that hydrolyses N-linked

glycans on IgG and α1-acid glycoprotein. Biochem. J., 455,

107–118 (2013).

T. Li, X. Tong, Q. Yang, J.P. Giddens, and L.-X. Wang:

Glycosynthase mutants of endoglycosidase S2 show po‐

tent transglycosylation activity and remarkably relaxed

substrate specificity for antibody glycosylation remodeling.

J. Biol. Chem., 291, 16508–16518 (2016).

S.S. Shivatare, L.-Y. Huang, Y.-F. Zeng, et al.: Develop‐

ment of glycosynthases with broad glycan specificity for

the efficient glyco-remodeling of antibodies. Chem. Com‐

mun, 54, 6161–6164 (2018).

T. Li, D.J. DiLillo, S. Bournazos, J.P. Giddens, J.V Rav‐

etch, and L.-X. Wang: Modulating IgG effector function

by Fc glycan engineering. Proc. Natl. Acad. Sci. USA, 114,

3485–3490 (2017).

C. Li, T. Li, and L.-X. Wang: Chemoenzymatic defucosy‐

lation of therapeutic antibodies for enhanced effector func‐

tions using bacterial α-fucosidases. Methods Mol. Biol.,

1827, 367–380 (2018).

M. Kurogochi, M. Mori, K. Osumi, et al.: Glycoengineered

monoclonal antibodies with homogeneous glycan (M3,

G0, G2, and A2) using a chemoenzymatic approach have

52)

53)

54)

55)

56)

57)

58)

59)

60)

different affinities for FcγRIIIa and variable antibody-de‐

pendent cellular cytotoxicity activities. PLoS One, 10,

e0132848 (2015).

K. Kuroda, K. Kobayashi, Y. Kitagawa, et al: Efficient

antibody production upon suppression of O mannosylation

in the yeast Ogataea minuta. Appl. Environ. Microbiol., 74,

446–453 (2008).

T.Q. Shang, A. Saati, K.N. Toler, J. Mo, H. Li, T. Matlosz,

X. Lin, J. Schenk, C.-K. Ng, T. Duffy, T.J. Porter, and J.C.

Rouse: Development and application of a robust N-glycan

profiling method for heightened characterization of mono‐

clonal antibodies and related glycoproteins. J. Pharm. Sci.,

103, 1967–1978 (2014).

W. Huang, J. Li, and L.-X. Wang: Unusual transglycosyla‐

tion activity of Flavobacterium meningosepticum endogly‐

cosidases enables convergent chemoenzymatic synthesis

of core fucosylated complex N-glycopeptides. ChemBio‐

Chem, 12, 932–941 (2011).

T. Katoh, T. Katayama, Y. Tomabechi, Y. Nishikawa, J.

Kumada, Y. Matsuzaki, and K. Yamamoto: Generation of

a mutant Mucor hiemalis endoglycosidase that acts on

core-fucosylated N-glycans. J. Biol. Chem., 291, 23305–

23317 (2016).

M. Iwamoto, Y. Sekiguchi, K. Nakamura, Y. Kawaguchi,

T. Honda, and J. Hasegawa: Generation of efficient mu‐

tants of endoglycosidase from Streptococcus pyogenes

and their application in a novel one-pot transglycosyla‐

tion reaction for antibody modification. PLoS One, 13,

e0193534 (2018).

F. Tang, Y. Yang, Y. Tang, S. Tang, L. Yang, B. Sun, B.

Jiang, J. Dong, H. Liu, M. Huang, M.-Y. Geng, and W.

Huang: One-pot N-glycosylation remodeling of IgG with

non-natural sialylglycopeptides enables glycosite-specific

and dual-payload antibody-drug conjugates. Org. Biomol.

Chem., 14, 9501–9518 (2016).

T. Li, C. Li, D.N. Quan, W.E. Bentley, and L.-X.

Wang: Site-specific immobilization of endoglycosidases

for streamlined chemoenzymatic glycan remodeling of an‐

tibodies. Carbohydr. Res., 458-459, 77–84 (2018).

J.P. Giddens, J.V. Lomino, D.J. DiLillo, J.V. Ravetch,

and L.-X. Wang: Site-selective chemoenzymatic glycoen‐

gineering of Fab and Fc glycans of a therapeutic antibody.

Proc. Natl. Acad. Sci. USA, 115, 12023–12027 (2018).

C.-P. Liu, T.-I. Tsai, T. Cheng, V.S. Shivatare, C.-Y. Wu,

and C.-H. Wong: Glycoengineering of antibody (Hercep‐

tin) through yeast expression and in vitro enzymatic glyco‐

sylation. Proc. Natl. Acad. Sci. USA, 115, 720–725 (2018).

...

参考文献をもっと見る