リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「An analytic approach to O'Hara's energy : Discretization, variational formulae and estimates」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

An analytic approach to O'Hara's energy : Discretization, variational formulae and estimates

川上 翔矢 埼玉大学 DOI:info:doi/10.24561/00019147

2020

概要

In his papers [26, 27, 28], O’Hara proposed several energies for knots to determine the canonical shape in a given knot class. In order to describe this
energy, let f : R/LZ 3 s 7→ f (s) be an arc-length parametrization of a knot, or
more generally, of a closed curve in Rn without self-intersections. ...

参考文献

[1] A. Abrams, J. Cantarella, J. H. G. Fu, M. Ghomi, and R. Howard, Circles

minimize most knot energies, Topology, 42 (2) (2003), 381–394.

[2] S. Blatt, The gradient flow of the M¨

obius energy near local minimizers,

Calc. Var. Partial Differential Equations, 43 (3–4) (2012), 403–439.

[3] S. Blatt, Boundedness and regularizing effects of O’Hara’s knot energies,

J. Knot Theory Ramifications, 21 (1) (2012), 1250010, 9pp.

[4] S. Blatt, The gradient flow of O’Hara’s knot energies, Math. Ann., 370

(3–4) (2018), 993–1061.

[5] S. Blatt, A. Ishizeki, and T. Nagasawa, A M¨

obius invariant discretization

of O’Hara’s M¨

obius energy, arXiv:1809.07984.

[6] S. Blatt, A. Ishizeki, and T. Nagasawa, A M¨

obius invariant discretization

and decomposition of the M¨

obius energy, arXiv:1904.06818.

[7] S. Blatt and P. Reiter, Stationary points of O’Hara’s knot energies,

Manuscripta Math., 140 (1–2) (2013), 29–50.

60

[8] S. Blatt, P. Reiter, and A. Schikorra, Harmonic analysis meets critical

knots. Critical points of the M¨

obius energy are smooth, Trans. Amer. Math.

Soc., 368 (9) (2016), 6391–6438.

[9] S. Blatt, P. Reiter, and A. Schikorra, On O’Hara knot energies I: regularity

for critical knots, arXiv: 1905.06064.

[10] S. Blatt and N. Vorderobermeier, On the analyticity of critical points of the

obius energy, Calc. Var. Partial Differential Equations, 58 (1) (2019), 28

pp.

[11] J.-L. Brylinski, The beta function of a knot, Int. J. Math., 10 (4) (1999),

415–423.

[12] G. Dal Maso, “An introduction to Γ-convergence”, Progress in Nonlinear

Diffrential Equations and their Applications, vol. 8, Birkh¨auser Boston,

Boston, MA, 1993.

[13] M. H. Freedman, Z.-X. He, and Z. Wang, M¨

obius energy of knots and

unknots, Ann. of Math., 139 (1994), 1–50.

[14] L. G´abor, On the mean length of the chords of a closed curve, Israel J.

Math., 4 (1966), 23–32.

[15] Z.-X. He, The Euler-Lagrange equation and heat flow for the M¨

obius energy,

Comm. Pure Appl. Math., 53 (4) (2000), 399–431.

[16] A. Ishizeki and T. Nagasawa, A decomposition theorem of the M¨

obius energy

I: Decomposition and M¨

obius invariance, Kodai. Math. J., 37 (3) (2014),

737–754.

[17] A. Ishizeki and T. Nagasawa, A decomposition theorem of the M¨

obius energy

II: Variational formulae and estimates, Math. Ann., 363 (1–2) (2015), 617–

635.

[18] A. Ishizeki and T. Nagasawa, The invariance of decomposed M¨

obius energies under the inversions with center on curves, J. Knot Theory Ramifications 26 (2016), 1650009, 22 pp.

[19] A. Ishizeki and T. Nagasawa, Decomposition of generalized O’Hara’s energies, arXiv:1904.06812.

[20] S. Kawakami, A discretization of O’Hara’s knot energy and its convergence,

arXiv:1908.11172.

[21] S. Kawakami, Recent topics on the O’Hara energies, arXiv:1908.11671.

[22] S. Kawakami and T. Nagasawa, Variational formulae and estimates of

O’Hara’s knot energies, arXiv:1908.11677.

[23] D. Kim and R. Kusner, Torus knots extremizing the M¨

obius energy, Experiment. Math., 2 (1) (1993), 1–9.

[24] R. Kusner and J. M. Sullivan, On distortion and thickness of knots, in

“Ideal Knots” (Ed.: A. Stasiak, V. Katrich, L. H. Kauffman), World Scientific, Singapore, 1998, pp. 315–352.

61

[25] S. Miyajima, “Introduction to Sobolev Space and its Application”, Kyoritsu

Shuppan, Tokyo, 2006, in Japanese.

[26] J. O’Hara, Energy of a knot, Topology, 30 (2) (1991), 241–247.

[27] J. O’Hara, Family of energy functionals of knots, Topology Appl., 48 (2)

(1992), 147–161.

[28] J. O’Hara, Energy functionals of knots II, Topology Appl., 56 (1) (1994),

45–61.

[29] J. Okamoto,

Random

arXiv:1905.06657.

discretization

of

O’Hara

knot

energy,

[30] E. J. Rawdon and J. K. Simon, Polygonal approximation and energy of

smooth knots, J. Knot Theory Ramifications, 15 (4) (2006), 429–451.

[31] P. Reiter, Repulsive knot energies and pseudodifferential calculus for

O’Hara’s knot energy family E (α) , α ∈ [2, 3), Math. Nachr., 285 (7) (2012),

889–913.

[32] S. Scholtes, Discrete M¨

obius energy, J. Knot Theory Ramifications, 23

(2014), 1450045, 16 pp.

[33] J. K. Simon, Energy functions for polygonal knots, J. Knot Theory Ramifications, 3 (3) (1994), 299–320.

[34] N. Vorderobermeier, On the regularity of critical points for O’Hara’s knot

energies: From smoothness to analyticity, arXiv:1904.13129.

62

...

参考文献をもっと見る