リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Assessing the geospatial nature of location-dependent costs in installation of solar photovoltaic plants」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Assessing the geospatial nature of location-dependent costs in installation of solar photovoltaic plants

Basu, Soumya Ogawa, Takaya Okumura, Hideyuki Ishihara, Keiichi N. 京都大学 DOI:10.1016/j.egyr.2021.07.068

2021.11

概要

A major hurdle in increasing the economic feasibility of solar photovoltaic (SPV) plants is the ever-increasing share of location-dependent costs (land, transmission, labor, etc.) in total installation costs. Such costs are geospatial in nature, due to spatial socio-economics affecting them. Present geolocation methods, for locating SPV installation sites, do not consider the effect of location-dependent costs in installation. We use a spatial parameterization model for examining the factors causing spatial variation of the installation costs of land, labor, transmission and supply chains for suburban SPV plants, within a geographic boundary. The model is applied to Kolkata city, India, and the spatial variation of the costs are checked in a 2500 km²2 suburban boundary. The spatial variation of the location-dependent costs is mainly caused by the distance from an economic focal point of the city. The variations significantly optimize at minima points in the 2500 km² boundary, where the location-dependent costs increase by 10% with an average 2.6 km deviation and an average 6.7 km deviation from the global minima, for small and large plants, respectively. The spatial minima is mainly caused by variance of land and transmission costs. This minima location lies on the extrapolation of a line that connects the city focal point with the substation. The capacity of the SPV plants at the optima increases with increasing transmission voltage (11 kV to 66 kV), ranging from 4 MW to 257 MW in the case-study (small to large scale), while the minima shift away from the city focal point (ranging 29 km to 48 km) with increasing capacity. This study provides a perspective on how the spatial variation of installation costs can play a role in the geolocation of SPV plants. Furthermore, the empirical and spatial variation of location-dependent costs can enable energy planners to evaluate the economic feasibility of solar power and promote better land-use near cities.

この論文で使われている画像

参考文献

Appendix A. Hedonic function variables

Ali, A.M., Mustafa, S.S., Mutlag, A.H., 2016. Design optimization of solar power

system with respect to temperature and sun tracking. In: 2016 Al-Sadeq

Intl. Conf. on Multidis. in IT and Comm. Sci. and Appl. pp. 1–5. http:

//dx.doi.org/10.1109/AIC-MITCSA.2016.7759956.

The equations that were used to calculate the social variables

from the raw census data in Table 3 are given as follows:

4892

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

S. Basu, T. Ogawa, H. Okumura et al.

Energy Reports 7 (2021) 4882–4894

IRENA, 2014. Solar power spatial planning techniques. IRENA Glob. Atlas.

https://www.irena.org/-/media/Files/IRENA/Agency/Events/2014/Jul/15/9_

Solar_power_spatial_planning_techniques_Arusha_Tanzania.pdf?la=en&hash=

F98313D5ADB4702FC910B94586C73AD60FA45FDE.

IRENA, 2019. Renewable energy capacity statistics 2019. Int. Renew. Energy

Agency https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/

Mar/IRENA_RE_Capacity_Statistics_2019.pdf.

Janke, J.R., 2010. Multicriteria GIS modeling of wind and solar farms in colorado.

Ren. Ene. 35 (10), 2228–2234. http://dx.doi.org/10.1016/j.renene.2010.03.014.

Joyce, K., 2012. Optimizing PV Plant Design To Achieve a Low Levelized Cost of

Energy. Black & Veatch, Power-Gen International.

Kain, J.F., Quigley, J.M., 1970. Measuring the value of house quality. J. Amer. Stat.

Assn. 65 (330), 532–548, https://www.jstor.org/sTable/2284565.

Katz, L., Rosen, K.T., 1987. The interjurisdictional effects of growth controls

on housing prices. J. Law Econ. 30 (1), 149–160. http://dx.doi.org/10.1086/

467133.

Lillydahl, J.H., Singell, L.D., 1985. The spatial variation in unemployment and

labour force participation rates of male and female workers. Reg. Stud. 19

(5), 459–469. http://dx.doi.org/10.1080/09595238500185451.

McDonald, J.F., McMillen, D.P., 1990. Employment subcenters and land values in

a polycentric urban area: The case of Chicago. Env. Plan. A: Econ. Space 22

(12), 1561–1574. http://dx.doi.org/10.1068/a221561.

Meng, F., Zou, Q., Zhang, Z., Wang, B., Ma, H., Abdullah, H.M., Almalaq, A.,

Mohamed, M.A., 2021. An intelligent hybrid wavelet-adversarial deep model

for accurate prediction of solar power generation. Energy Rep. 7, 2155–2164.

http://dx.doi.org/10.1016/j.egyr.2021.04.019.

Mondal, B., Bolui, G., Chakraborti, S., 2018. Estimation of spatial association

between housing price and local environmental amenities in Kolkata, India

using hedonic local regression. Pap. App. Geog. 4 (3), 274–291. http://dx.doi.

org/10.1080/23754931.2018.1446354.

Morris, J., Calhoun, K., Goodman, J., Seif, D., 2014. Reducing solar PV soft costs:

A focus on installation labor. In: 2014 IEEE 40th PV Spec. Conf (PVSC). pp.

3356–3361. http://dx.doi.org/10.1109/PVSC.2014.6925654.

Mostafa, M., Abdullah, H.M., Mohamed, M.A., 2020. Modeling and experimental

investigation of solar stills for enhancing water desalination process. IEEE

Access 8, 219457-219472. http://dx.doi.org/10.1109/ACCESS.2020.3038934.

Oguz, E., Şentürk, A.E., 2019. Selection of the most sustainable renewable energy

system for bozcaada Island: Wind vs. Photovoltaic. Sustain 11, 4098–4131.

http://dx.doi.org/10.3390/su11154098.

O’Shaughnessy, E., Nemet, G.F., Pless, J., Margolis, R., 2019. Addressing the soft

cost challenge in U.S. small-scale solar PV system pricing. Ene. Pol. 134,

#110956. http://dx.doi.org/10.1016/j.enpol.2019.110956.

Ottensmann, J.R., Payton, S., Man, J., 2008. Urban location and housing prices

within a hedonic model. J. Reg. Ana. Pol. 28 (1), 19–35. http://dx.doi.org/10.

22004/ag.econ.132338.

Ozcan, O., Ersoz, F., 2019. Project and cost-based evaluation of solar energy

performance in three different geographical regions of Turkey: Investment

analysis application. Eng. Sci. Tech. Int. J. 22 (4), 1098–1106. http://dx.doi.

org/10.1016/j.jestch.2019.04.001.

Padmanathan, K., Govindarajan, U., Ramachandaramurthy, V.K., T., S.O.S., 2017.

Multiple criteria decision making (MCDM) based economic analysis of solar

PV system with respect to performance investigation for Indian market.

Sustainability 9 (5), 820–839. http://dx.doi.org/10.3390/su9050820.

REI,

2016.

https://www.renewable-ei.org/images/pdf/20160113/JREF_Japan_Germany_

solarpower_costcomparison.pdf.

Reta-Hernandez, M., 2006. Chapter 13: Transmission Line Parameters. Universidad Autonoma de Zacatecas, Taylor and Francis Group LLC Publication,

https://www.unioviedo.es/pcasielles/uploads/proyectantes/cosas_lineas.pdf.

Rocha, M.S.D.B., Ponczek, V., 2011. The effects of adult literacy on earnings and

employment. Econ. Educ. Rev. 30 (4), 755–764. http://dx.doi.org/10.1016/j.

econedurev.2011.03.005.

Rumbayan, M., Nagasaka, K., 2012. Prioritization decision for renewable energy

development using analytic hierarchy process and geographic information

system. In: The 2012 International Conference on Advanced Mechatronic

Systems. pp. 36–41, https://ieeexplore.ieee.org/document/6329677.

San Cristóbal, J.R., 2012. A goal programming model for the optimal mix and

location of renewable energy plants in the north of Spain. Renew. Sustain.

Energy Rev. 16 (7), 4461–4464. http://dx.doi.org/10.1016/j.rser.2012.04.039.

Siali, M., Flazi, S., Stambouli, A.B., Fergani, S., 2016. Optimization of the investment cost of solar based grid. Renew. Energy 97, 169–176. http://dx.doi.org/

10.1016/j.renene.2016.05.077.

Singh, G., Das, R., 2020. Comparative assessment of different air-conditioning systems for nearly/net zero-energy buildings. Int. J. Ene. Res. 44 (5), 3526–3546.

http://dx.doi.org/10.1002/er.5065.

Sun, Y., Hof, A., Wang, R., Liu, J., Lin, Y., Yang, D., 2013. GIS-based approach for

potential analysis of solar PV generation at the regional scale: A case study

of fujian province. Ene. Pol. 58, 248–259. http://dx.doi.org/10.1016/j.enpol.

2013.03.002.

Amjad, F., Shah, L.A., 2020. Identification and assessment of sites for solar farms

development using GIS and density based clustering technique- a case of

Pakistan. Renew. Energy 155, 761–769. http://dx.doi.org/10.1016/j.renene.

2020.03.083.

Asim, N., Sopian, K., Ahmadi, S., Saeedfar, K., Alghoul, M.A., Saadatian, O.,

Zaidi, S.H., 2012. A review on the role of materials science in solar cells.

Renew. Sustain. Energy Rev. 16 (8), 5834–5847. http://dx.doi.org/10.1016/j.

rser.2012.06.004.

Banerjee, B., Islam, S.M., 2011. Reliability based optimum location of distributed

generation. Intl. J. Elec. Power Energy Sys. 33 (8), 1470–1478. http://dx.doi.

org/10.1016/j.ijepes.2011.06.029.

Bourassa, S.C., Hoesli, M., Scognamiglio, D., Zhang, S., 2011. Land leverage and

house prices. Reg. Sci. Urban Econ. 41 (2), 134–144. http://dx.doi.org/10.

1016/j.regsciurbeco.2010.11.002.

Campbell, M., Blunden, J., Smeloff, E., Aschenbrenner, P., 2009. Minimizing

utility-scale PV power plant LCOE through the use of high capacity factor

configurations. In: 34th IEEE Photovoltaic Specialists Conference, 7-12 Sept.

http://dx.doi.org/10.1109/PVSC.2009.5411650.

CERC, 2010. Explanatory Memorandum for Benchmark Capital Cost Norms

for Solar PV Power Projects and Solar Thermal Power Projects. Central

Electricity Regulatory Commission, p. 2010, https://cercind.gov.in/2010/

ORDER/Sept10/Explanatory_Memo_for_Project_cost_for_solar_PV_{and}_

Solar_thermal_2011-12_255-2010.pdf.

Chakraborty, S., Sadhu, P.K., Pal, N., 2015. Technical mapping of solar PV for

ISM-an approach toward green campus. Ene. Sci. Eng. 3 (3), 196–206. http:

//dx.doi.org/10.1002/ese3.65.

Chandel, M., Agrawal, G.D., Mathur, S., Mathur, A., 2014. Techno-economic

analysis of solar photovoltaic power plant for garment zone of Jaipur city.

Case Stud. Therm. Eng. 2, 1–7. http://dx.doi.org/10.1016/j.csite.2013.10.002.

Chang, C.T., 2015. Multi-choice goal programming model for the optimal location

of renewable energy facilities. Renew. Sustain. Energy Rev. 41, 379–389.

http://dx.doi.org/10.1016/j.rser.2014.08.055.

Charabi, Y., Gastli, A., 2011. PV site suitability analysis using GIS-based spatial

fuzzy multi-criteria evaluation. Renew. Energy 36 (9), 2554–2561. http:

//dx.doi.org/10.1016/j.renene.2010.10.037.

Darling, S.B., You, F., Veselka, T., Velosa, A., 2011. Assumptions and the levelized

cost of energy for photovoltaics. Energy Environ. Sci. 4, 3133–3139. http:

//dx.doi.org/10.1039/c0ee00698j.

Das, R., Akay, B., Singla, R.K., Singh, K., 2015. Application of artificial bee colony

algorithm for inverse modelling of a solar collector. Inverse Prob. Sci. Eng.

25 (6), 887–908. http://dx.doi.org/10.1080/17415977.2016.1209748.

Davis, M.A., Heathcote, J., 2007. The price and quantity of residential land in the

United States. J. Mon. Econ. 54 (8), 2595–2620. http://dx.doi.org/10.1016/j.

jmoneco.2007.06.023.

Davis, M.A., Palumbo, M.G., 2008. The price of residential land in large U.S. cities.

J. Urban Econ. 63 (1), 352–384. http://dx.doi.org/10.1016/j.jue.2007.02.003.

Diab, A.A.Z., Mohamed, M.A., Al-Sumaiti, A., Sultan, H., Mossa, M., 2021. A

novel hybrid optimization algorithm for maximum power point tracking of

partially shaded photovoltaic systems. In: Adv. Tech. Solar PV Ene. Sys. Green

Ene. & Tech. Springer, p. 201. http://dx.doi.org/10.1007/978-3-030-645656_7.

El-Shimy, M., 2012. Analysis of levelized cost of energy (LCOE) and grid

parity for utility-scale photovoltaic generation systems. In: 15th International

Middle East Power Systems Conference. http://dx.doi.org/10.13140/RG.2.2.

10311.29603.

Franklin, J.P., Waddell, P., 2003. A hedonic regression of home prices in king

county, washington, using activity-specific accessibility measures. Transp.

Res. Board Annu. Meet. http://www.ce.umn.edu/levinson/pa8202/Waddell%

20-%20Hedonic.pdf.

Fu, R., Feldman, D., Margolis, R., 2018. U.S. Solar Photovoltaic System Cost

Benchmark: Q1 2018. National Renewable Energy Laboratory, https://www.

nrel.gov/docs/fy19osti/72399.pdf.

Gouldson, A., Kerr, N., Mcanulla, F., Hall, S., Colenbrander, S., Sudmant, A., Roy, J., Sarkar, S., Ghatak, A., Chakravarty, D., Ganguly, D.,

2014. The Economics of Low Carbon Cities: Kolkata, India. University of Leeds, https://www.researchgate.net/publication/270339682_The_

Economics_of_Low_Carbon_Cities_Kolkata_India.

Guaita-Pradas, I., Marques-Perez, I., Gallego, A., 2019. Analyzing territory for the

sustainable development of solar photovoltaic power using GIS databases.

Environ. Monit. Assess 191, #764. http://dx.doi.org/10.1007/s10661-0197871-8.

Haaren, R.V., Fthenakis, V., 2011. GIS-based wind farm site selection using spatial

multi-criteria analysis (SMCA): Evaluating the case for New York State.

Renew. Sustain. Energy Rev. 15 (7), 3332–3340. http://dx.doi.org/10.1016/

j.rser.2011.04.010.

Helioscart, 2020. Commonly used ACSRs in India. https://medium.com/

@helioscart/commonly-used-acsr-conductors-in-india-5930fae4585.

Höller, R., Gudopp, D., Leschinsky, T., 2019. Solar PV Cost Reduction Potential in

Japan. http://dx.doi.org/10.20944/preprints201904.0065.v1, Preprints.

4893

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

S. Basu, T. Ogawa, H. Okumura et al.

Energy Reports 7 (2021) 4882–4894

UPPTCL, 2020. A guideline of ACSR conductors of India. https://upenergy.in/

upptcl/en/article/conductors-for-trans.

Wu, Y., Geng, S., 2014. Multi-criteria decision making on selection of solar–wind

hybrid power station location: A case of China. Energy Convers. Manage. 81,

527–533. http://dx.doi.org/10.1016/j.enconman.2014.02.056.

Zhang, F., Deng, H., Margolis, R., Su, J., 2015. Analysis of distributed-generation

photovoltaic deployment, installation time and cost, market barriers, and

policies in China. Energy Policy 81, 43–55. http://dx.doi.org/10.1016/j.enpol.

2015.02.010.

Tang, J., Huo, Z., Brittman, S., Gao, H., Yang, P., 2011. Solution-processed core–

shell nanowires for efficient photovoltaic cells. Nat. Nanotech. 6, 568–572.

http://dx.doi.org/10.1038/nnano.2011.139.

Tillmann, P., Jäger, K., Becker, C., 2019. Minimizing the levelized cost of electricity

for bifacial solar panel arrays using Bayesian optimization. Appl. Phys. Cornell

University, https://arxiv.org/abs/1909.01660v1.

TSERC, 2018. Information on Fixed Cost Estimates. Telengana State Electricity

Regulatory Commission, https://www.tssouthernpower.com/ShowProperty/

CP_CM_REPO/Pages/TS%20-%20iPASS/InfoFixedCostEstimates.

UERC, 2019. Uttarakhand Electricity Regulatory Commission. Petition (18) of

2019 (Suo-Moto), http://www.uerc.gov.in/orderspetitions/orders/Misc/2019/

june19/Order%20dt.%2007.06.19%20on%20benchmark%20cost.pdf.

4894

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る