リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Lactobacillus plantarum Shinshu N-07 isolated from fermented Brassica rapa L. attenuates visceral fat accumulation induced by high-fat diet in mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Lactobacillus plantarum Shinshu N-07 isolated from fermented Brassica rapa L. attenuates visceral fat accumulation induced by high-fat diet in mice

Yin J Bayanjargal S Fang B Inaba C Mutoh M Kawahara T Tanaka S Watanabe J 帯広畜産大学

2021.05.24

概要

"Lactobacillus plantarum Shinshu N-07 (N07) and Lactobacillus curvatus #4G2 (#4G2)
were isolated from fermented Brassica rapa L. and selected as promising probiotics
with anti-adiposity activities based on in vitro assays. The anti-adiposity effects of these
two strains were investigated using a diet-induced obesity animal model. Epididymal
adipose tissue weight and adipocyte area were significantly lower and serum
triglycerides and glucose tended to be lower in mice fed the high-fat diet supplemented
with N07 compared with those fed the unsupplemented high-fat diet. Strain N07
suppressed hepatic steatosis, with accompanying downregulation of lipogenic genes in
the liver. Expression of inflammatory cytokines and macrophage infiltration markers
tended to be suppressed by N07 supplementation. Upregulation of uncoupling protein-1
in epididymal adipose tissue by N07 suggested that the transformation of white adipose
tissue to brown might have been induced. Intestinal microbiota analysis revealed that a
decrease in abundance of family S24-7 (phylum Bacteroidetes) following ingestion of
the high-fat diet was partly recovered by supplementation with N07. Changes in those
parameters were not observed in mice fed the high-fat diet supplemented with strain
#4G2, suggesting strain specificities. Thus, N07 is a potential probiotic strain that could
be used to develop functional foods that attenuate visceral fat accumulation after an
appropriate human intervention trial."

この論文で使われている画像

参考文献

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., 1990. Basic local

alignment search tool. Journal of Molecular Biology 215: 403–410.

https://doi.org/10.1016/S0022-2836(05)80360-2.

Begley, M., Gahan, C.G.M., and Hill, C., 2005. The interaction between bacteria and

bile. FEMS Microbiology Reviews 29: 625–651.

Berthier, F., and Ehrlich, S.D., 1999. Genetic diversity within Lactobacillus sakei and

Lactobacillus curvatus and design of PCR primers for its detection using randomly

amplified polymorphic DNA. International Journal of Systematic Bacteriology 49:

997–1007.

Di Cagno, R., Coda, R., De Angelis, M., and Gobbetti, M., 2013. Exploitation of

vegetables and fruits through lactic acid fermentation. Food Microbiology 33: 1–

10.

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes,

S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon

data. Nature Methods 13: 581–583.

Campbell, C.L., Yu, R., Li, F., Zhou, Q., Chen, D., Qi, C., Yin, Y., and Sun, J., 2019.

Modulation of fat metabolism and gut microbiota by resveratrol on high-fat dietinduced obese mice. Diabetes, Metabolic Syndrome and Obesity: Targets and

Therapy 12: 97–107.

Chen, L., Xu, Y., Chen, X., Fang, C., Zhao, L., and Chen, F., 2017. The maturing

development of gut microbiota in commercial piglets during the weaning

transition. Frontiers in Microbiology 8: 1–13.

Cumbie, C.B., and Hermayer, L.K., 2008. Current concepts in targeted therapies for the

pathophysiology of diabetic microvascular complications. Vascular Health and

Risk Management 55: 823–832.

DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber,

T., Dalevi, D., Hu, P., and Andersen, G.L., 2006. Greengenes, a chimera-checked

16S rRNA gene database and workbench compatible with ARB. Applied and

19

Environmental Microbiology 72: 5069–72. https://doi.org/10.1128/AEM.0300605.

Fuller R., 1989. Probiotics in man and animals. Journal of Applied Bacteriology 66:

365–378.

Fusco, V., Quero, G.M., Chieffi, D., and Franz, C.M.A.P., 2016. Identification of

Lactobacillus brevis using a species-specific AFLP-derived marker. International

Journal of Food Microbiology 232: 90–94.

Guo, L.D., Yang, L.J., and Huo, G.C., 2011. Cholesterol removal by Lactobacillus

plantarum isolated from homemade fermented cream in inner Mongolia of China.

Czech Journal of Food Sciences 29: 219–225.

Hamilton, M.K., Ronveaux, C.C., Rust, B.M., Newman, J.W., Hawley, M., Barile, D.,

Mills, D.A., and Raybould, H.E., 2017. Prebiotic milk oligosaccharides prevent

development of obese phenotype, impairment of gut permeability, and microbial

dysbiosis in high fat-fed mice. American Journal of Physiology - Gastrointestinal

and Liver Physiology 312: G474–G487. https://doi.org/10.1152/ajpgi.00427.2016.

Huang, Y., Wang, X., Wang, J., Wu, F., Sui, Y., Yang, L., and Wang, Z., 2013.

Lactobacillus plantarum strains as potential probiotic cultures with cholesterollowering activity. Journal of dairy science 96: 2746–53.

https://doi.org/10.3168/jds.2012-6123.

Joyce, S.A., MacSharry, J., Casey, P.G., Kinsella, M., Murphy, E.F., Shanahan, F., Hill,

C., and Gahan, C.G.M., 2014. Regulation of host weight gain and lipid metabolism

by bacterial bile acid modification in the gut. Proceedings of the National

Academy of Sciences 111: 7421–7426. https://doi.org/10.1073/pnas.1323599111.

Karnik, A.A., Fields, A. V, and Shannon, R.P., 2007. Diabetic cardiomyopathy. Current

Hypertension Reports 9: 467–73.

Kennedy, R., Lappin, D.F., Dixon, P.M., Buijs, M.J., Zaura, E., Crielaard, W.,

O’Donnell, L., Bennett, D., Brandt, B.W., and Riggio, M.P., 2016. The

microbiome associated with equine periodontitis and oral health. Veterinary

Research 47: 49. https://doi.org/10.1186/s13567-016-0333-1.

Kim, D.-H., Jeong, D., Kang, I.-B., Kim, H., Song, K.-Y., and Seo, K.-H., 2017. Dual

function of Lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity:

direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue.

Molecular Nutrition & Food Research: 1700252.

20

https://doi.org/10.1002/mnfr.201700252.

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., and

Glöckner, F.O., 2013. Evaluation of general 16S ribosomal RNA gene PCR

primers for classical and next-generation sequencing-based diversity studies.

Nucleic Acids Research 41: 1–11.

Konopka, A., 2009. What is microbial community ecology. ISME Journal 3: 1223–

1230.

Lee, C.J., Sears, C.L., and Maruthur, N., 2019. Gut microbiome and its role in obesity

and insulin resistance. Annals of the New York Academy of Sciences: 1–16.

https://doi.org/ 10.1111/nyas.14107.

Liao, C.-C., Ou, T.-T., Wu, C.-H., and Wang, C.-J., 2013. Prevention of diet-induced

hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of

hepatic lipogenesis gene expression. Journal of Agricultural and Food Chemistry

61: 11082–11088. https://doi.org/10.1021/jf4026647.

Lim, S.-M., Jeong, J.-J., Woo, K.H., Han, M.J., and Kim, D.-H., 2016. Lactobacillus

sakei OK67 ameliorates high-fat diet-induced blood glucose intolerance and

obesity in mice by inhibiting gut microbiota lipopolysaccharide production and

inducing colon tight junction protein expression. Nutrition research 36: 337–48.

https://doi.org/10.1016/j.nutres.2015.12.001.

Liong, M.T., and Shah, N.P., 2005. Acid and bile tolerance and cholesterol removal

ability of lactobacilli strains. Journal of Dairy Science 88: 55–66.

https://doi.org/10.3168/jds.S0022-0302(05)72662-X.

Madani, G., Mirlohi, M., Yahay, M., and Hassanzadeh, A., 2013. How much in vitro

cholesterol reducing activity of lactobacilli predicts their in vivo cholesterol

function? International journal of preventive medicine 4: 404–13.

Masood, M.I., Qadir, M.I., Shirazi, J.H., and Khan, I.U., 2011. Beneficial effects of

lactic acid bacteria on human beings. Critical Reviews in Microbiology 37: 91–98.

https://doi.org/10.3109/1040841X.2010.536522.

McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., Desantis, T.Z., Probst, A.,

Andersen, G.L., Knight, R., and Hugenholtz, P., 2012. An improved Greengenes

taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria

and archaea. ISME Journal 6: 610–618. https://doi.org/10.1038/ismej.2011.139.

Million, M., Angelakis, E., Paul, M., Armougom, F., Leibovici, L., and Raoult, D.,

21

2012. Comparative meta-analysis of the effect of Lactobacillus species on weight

gain in humans and animals. Microbial Pathogenesis 53: 100–108.

https://doi.org/10.1016/j.micpath.2012.05.007.

Miyoshi, M., Ogawa, A., Higurashi, S., and Kadooka, Y., 2014. Anti-obesity effect of

Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory

gene expression in the visceral adipose tissue in diet-induced obese mice.

European Journal of Nutrition 53: 599–606.

Ogita, T., Tanii, Y., Morita, H., and Tanabe, S., 2011. Suppression of Th17 response by

Streptococcus thermophilus ST28 through induction of IFN-γ. International

Journal of Molecular Medicine 28: 817–822.

https://doi.org/10.3892/ijmm.2011.755.

Olefsky, J.M., and Glass, C.K., 2010. Macrophages, Inflammation, and Insulin

Resistance. Expert Opinion on Therapeutic Targets 19: 1-28.

https://doi.org/ 10.1146/annurev-physiol-021909-135846.

Orci, L., Cook, W.S., Ravazzola, M., Wang, M., Park, B.-H., Montesano, R., and

Unger, R.H., 2004. Rapid transformation of white adipocytes into fat-oxidizing

machines. Proceedings of the National Academy of Sciences 101: 2058–2063.

https://doi.org/10.1073/pnas.0308258100.

Ormerod, K.L., Wood, D.L.A., Lachner, N., Gellatly, S.L., Daly, J.N., Parsons, J.D.,

Dal’Molin, C.G.O., Palfreyman, R.W., Nielsen, L.K., Cooper, M.A., Morrison, M.,

Hansbro, P.M., and Hugenholtz, P., 2016. Genomic characterization of the

uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic

animals. Microbiome 4: 1–17.

Park, S., Ji, Y., Jung, H.-Y., Park, H., Kang, J., Choi, S.-H., Shin, H., Hyun, C.-K., Kim,

K.-T., and Holzapfel, W.H., 2017. Lactobacillus plantarum HAC01 regulates gut

microbiota and adipose tissue accumulation in a diet-induced obesity murine

model. Applied Microbiology and Biotechnology 101: 1605–1614.

https://doi.org/10.1007/s00253-016-7953-2.

Parvez, S., Malik, K.A., Ah Kang, S., and Kim, H.Y., 2006. Probiotics and their

fermented food products are beneficial for health. Journal of Applied Microbiology

100: 1171–1185.

Reeves, P.G., Nielsen, F.H., and Fahey, G.C., 1993. AIN-93 purified diets for

laboratory rodents: final report of the American Institute of Nutrition ad hoc

22

writing committee on the reformulation of the AIN-76A rodent diet. The Journal of

Nutrition 123: 1939–51.

Russo, L., and Lumeng, C.N., 2018. Properties and functions of adipose tissue

macrophages in obesity. Immunology 155: 407–417.

Sandagdorj, B., Hamajima, C., Kawahara, T., Watanabe, J., and Tanaka, S., 2019.

Characterization of microbiota that influence immunomodulatory effects of

fermented Brassica rapa L. Microbes and Environments 34: 206–214.

https://doi.org/10.1264/jsme2.ME19003.

Sanz, Y., Santacruz, A., and Gauffin, P., 2010. Gut microbiota, obesity and metabolic

disorders. Proceedings of the Nutrition Socoety 69: 434–441.

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and

Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation.

Genome Biology 12: R60. https://doi.org/ 10.1186/gb-2011-12-6-r60.

Serino, M., Luche, E., Gres, S., Baylac, A., Bergé, M., Cenac, C., Waget, A., Klopp, P.,

Iacovoni, J., Klopp, C., Mariette, J., Bouchez, O., Lluch, J., Ouarné, F., Monsan,

P., Valet, P., Roques, C., Amar, J., Bouloumié, A., et al., 2012. Metabolic

adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut

61: 543–553.

De Smet, I., De Boever, P., and Verstraete, W., 1998. Cholesterol lowering in pigs

through enhanced bacterial bile salt hydrolase activity. The British Journal of

Nutrition 79: 185–94. https://doi.org/10.1079/bjn19980030.

Taguchi, H., Senoura, T., Hamada, S., Matsui, H., Kobayashi, Y., Watanabe, J., Wasaki,

J., and Ito, S., 2008. Cloning and sequencing of the gene for cellobiose 2epimerase from a ruminal strain of Eubacterium cellulosolvens. FEMS

Microbiology Letters 287: 34–40. https://doi.org/10.1111/j.15746968.2008.01281.x.

Tanaka, S., Yamamoto, K., Yamada, K., Furuya, K., and Uyeno, Y., 2016. Relationship

of enhanced butyrate production by colonic butyrate-producing bacteria and

immunomodulatory effects in normal mice fed insoluble fraction of Brassica rapa

L. Applied and Environmental Microbiology 82: 2693-2699.

https://doi.org/10.1128/AEM.03343-15.

Tomaro-Duchesneau, C., Jones, M.L., Shah, D., Jain, P., Saha, S., and Prakash, S.,

2014. Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro

23

investigation. BioMed Research International 2014: 380316.

https://doi.org/10.1155/2014/380316.

Tomaro-Duchesneau, C., Saha, S., Malhotra, M., Jones, M.L., Rodes, L., and Prakash,

S., 2015. Lactobacillus fermentum NCIMB 5221 and NCIMB 2797 as cholesterollowering probiotic biotherapeutics: In vitro analysis. Beneficial Microbes 6: 861–

869.

Torriani, S., Felis, E.G., and Dellaglio, F., 2001. Differentiation of Lactobacillus

plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and

multiplex PCR assay with recA gene-derived primers. Applied and Environmental

Microbiology 67: 3450–3454.

Verwaerde, C., Delanoye, A., Macia, L., Tailleux, A., and Wolowczuk, I., 2006.

Influence of high-fat feeding on both naive and antigen-experienced T-cell

immune response in DO10.11 mice. Scandinavian Journal of Immunology 64:

457–466.

Wagner, M., Samdal Steinskog, E.S., and Wiig, H., 2015. Adipose tissue macrophages:

the inflammatory link between obesity and cancer? Expert Opinion on Therapeutic

Targets 19: 527–538.

Wolowczuk, I., Verwaerde, C., Viltart, O., Delanoye, A., Delacre, M., Pot, B., and

Grangette, C., 2008. Feeding our immune system: Impact on metabolism. Clinical

and Developmental Immunology 2008: 639803.

https://doi.org/ 10.1155/2008/639803.

Wouters, D., Grosu-Tudor, S., Zamfir, M., and De Vuyst, L., 2013. Bacterial

community dynamics, lactic acid bacteria species diversity and metabolite kinetics

of traditional Romanian vegetable fermentations. Journal of the Science of Food

and Agriculture 93: 749–760.

Wu, C.-C., Weng, W.-L., Lai, W.-L., Tsai, H.-P., Liu, W.-H., Lee, M.-H., Tsai, Y.-C.,

Wu, C.-C., Weng, W.-L., Lai, W.-L., Tsai, H.-P., Liu, W.-H., Lee, M.-H., and

Tsai, Y.-C., 2015. Effect of Lactobacillus plantarum strain K21 on high-fat dietfed obese mice. Evidence-Based Complementary and Alternative Medicine 2015,

2015: e391767.

Yamamoto, K., Furuya, K., Yamada, K., Takahashi, F., Hamajima, C., and Tanaka, S.,

2018. Enhancement of natural killer activity and IFN-γ production in an IL-12dependent manner by a Brassica rapa L. Bioscience, Biotechnology, and

24

Biochemistry 82: 654–668. https://doi.org/10.1080/09168451.2017.1408396.

Zhao, L., Zhang, Q., Ma, W., Tian, F., Shen, H., and Zhou, M., 2017. A combination of

quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of

gut microbiota. Food and Function 8: 4644–4656.

25

(A)

NFD

35

HFD

30

N07

#4G2

25

20

15

0 2 4 6 8101214

216182022242628

430323436384042

644464850525456

Weeks after feeding

(B)

(C)

Liver (g/100g BW)

Figure 1

NFD

HFD

#4G2

N07

Epididymal adipose tissue (g/100g BW)

Body weight (g)

40

NFD

HFD

#4G2

N07

(A)

(B)

150

100

50

100

50

NFD

Figure 2

HFD

#4G2

N07

250

P=0.104

Serum glucose (mg/dL)

Serum TC (mg/dL)

Serum TG (mg/dL)

150

(C)

NFD

HFD

#4G2

N07

200

P=0.058

150

100

50

NFD

HFD

#4G2

N07

Liver TG (mg/g tissue)

Liver total lipid (mg/g tissue)

300

200

100

NFD

Figure 3

HFD

#4G2

N07

(B)

(C)

200

P=0.147

Liver TC (mg/g tissue)

(A)

150

100

50

NFD

HFD

#4G2

N07

NFD

HFD

#4G2

N07

(A)

(B)

100 µm

(C)

10000

Adipocyte

Adipocytearea

area(mm

(µm2))

(E)

(D)

8000

6000

4000

2000

Figure 4

NFD

HFD

#4G2

N07

Acc1

1.5

Fas

1.5

Acox1

Cpt1

1.5

1.5

Pparg

1.5

Relative expression

1.0

1.0

1.0

1.0

1.0

0.5

0.5

0.5

0.5

0.5

0.0

HFD #4G2 N07

Figure 5

0.0

HFD #4G2 N07

0.0

0.0

HFD #4G2 N07

HFD #4G2 N07

0.0

HFD #4G2 N07

Acc1

Relative expression

2.5

2.0

Fas

2.0

Acox1

Cpt1

1.5

1.0

1.0

1.0

1.0

0.5

0.5

0.5

HFD #4G2 N07

Pparg

2.0

1.5

0.0

HFD #4G2 N07

Ucp1

1.0

0.5

0.0

2.5

2.0

1.5

1.5

1.5

0.0

Relative expression

2.0

HFD #4G2 N07

Figure 6

HFD #4G2 N07

0.0

0.5

HFD #4G2 N07

0.0

HFD #4G2 N07

Relative expression

Tnfa

Il-1b

1.5

1.5

1.0

1.0

Cd11c

F4/80

1.5

2.0

1.5

1.0

1.0

0.5

0.0

0.5

HFD #4G2 N07

Figure 7

0.0

0.5

0.5

HFD #4G2 N07

0.0

HFD #4G2 N07

0.0

HFD #4G2 N07

(B)

50

NFD

HFD

#4G2

N07

0.2

-0.1

NFD

HFD

#4G2

0.1

40

0.1

35

HFD

30

N07

N07

0.0

100

-0.1

-0.2

10

PC2 - Percent variation explained 10.71 %

PCoA - PC1 vs PC2

0.2

-0.2

(C)

PC2 (10.71 %)

Observed OTUs

150

Faith's phylogenetic diversity

(A)

-0.1

(E)

10

NFD

Figure 8

HFD

#4G2

N07

Relative abundance of

f_Lactobacillaceae|_ (%)

Relative abundance of

o_Lactobacillales|f_|g_ (%)

10

NFD

HFD

#4G2

N07

#4G2

0.1

-0.1PC1 - Percent0variation

25explained0.1

28.67 %

PC1 (28.67 %)

(F)

Relative abundance of

f_S24-7|g_ (%)

(D)

0.0

NFD

0.2

0.2

20

15

0 2 4 6 8101214161820222426283

NFD

HFD

#4G2

N07

Table S1. Primer sequences for Lactobacillus species-specific PCR.

Target species

Forward (5¢ ® 3¢)

Reverse (5¢ ® 3¢)

L. brevis

AATTGATTTTCATACCGCAGAA

TTGGCACCGCATGATGTG

L. curvatus

GCTGGATCACCTCCTTTC

TTGGTACTATTTAATTCTTAG

L. plantarum

CCGTTTATGCGGAACACCTA

TCGGGATTACCAAACATCAC

Table S2. Primer sequences for reverse transcription-PCR.

Target gene

Forward (5¢ ® 3¢)

Reverse (5¢ ® 3¢)

Acc1

TGTTGAGACGCTGGTTTGTAGAA

GGTCCTTATTATTGTCCCAGACGTA

Fas

GATCCTGGAACGAGAACACGA

GAGACGTGTCACTCCTGGACTTG

Acox1

CTATGGGATCAGCCAGAAAGG

AGTCAAAGGCATCCACCAAAG

Cpt1

AGACCGTGAGGAACTCAAACCTAT

TGAAGAGTCGCTCCCACT

Pparg

TGACAGGAAAGACAACAGACAAAT

GGGTGATGTGTTTGAACTTGATT

Ucp1

TGCCACACCTCCAGTCATTA

TTGGAGCTGGCTTCTGTGC

Tnfa

TGGGAGTAGACAAGGTACAACCC

CATCTTCTCAAAATTCGAGTGACAA

Il1b

GTGGACCTTCCAGGATGAGG

CGGAGCCTGTAGTGCAGTTG

Cd11c

TGTGACGGTGTCTAATGATGG

AGTTGATGCTGACTGGCACG

F4/80

CCCCAGTGTCCTTACAGAGTG

GTGCCCAGAGTGGATGTCT

Rps18

CAGTGGTCTTGGTGTGCTGA

ACCTGGAGAGGCTGAAGAAA

NFD

HFD

#4G2

N07

Figure S1. Cladogram for differentially abundant gut microbiota of mice fed a normal-fat diet (NFD), high-fat diet (HFD),

HFD supplemented with Lactobacillus curvatus #4G2 (#4G2), and HFD supplemented with Lactobacillus plantarum

Shinshu N-07 (N07) were constructed based on LEfSe analysis. Only taxa meeting an LDA significant threshold >3 are

shown.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る