リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mid-infrared pulse generation using multi-plate white-light generation and optical parametric amplification in LiGaS₂ crystals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mid-infrared pulse generation using multi-plate white-light generation and optical parametric amplification in LiGaS₂ crystals

Nakagawa, Kotaro Ishii, Nobuhisa Kanemitsu, Yoshihiko Hirori, Hideki 京都大学 DOI:10.35848/1882-0786/acbd83

2023.03

概要

We demonstrate intense mid-infrared pulse generation with a pulse energy of up to 6.2 μJ and a tunable wavelength range of 5.3–7.4 μm. This light source is based on white-light generation by multi-plate pulse compression of the output of a commercial Yb:KGW laser pulse followed by intra-pulse difference frequency generation (DFG) and optical parametric amplification in LiGaS₂ crystals. Due to the use of intra-pulse DFG, we were able to generate carrier-envelope phase (CEP)-stable mid-infrared optical pulses with a CEP standard deviation of 114 mrad, corresponding to a timing fluctuation of 360 attoseconds during the 5-hour-long measurement.

この論文で使われている画像

参考文献

1) A. H. Chin, O. G. Calderón, and J. Kono, Phys. Rev. Lett. 86, 3292 (2001).

2) S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, Nat.

Phys. 7, 138 (2011).

3) O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T.

Meier, M. Kira, S. W. Koch, and R. Huber, Nat. Photon. 8, 119 (2014).

4) R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt.

Soc. Am. B 17, 2086 (2000).

5) T. Zentgraf, R. Huber, N. C. Nielsen, D. S. Chemla, and R. A. Kaindl, Opt. Express 15,

5775 (2007).

6) D. Brida, M. Marangoni, C. Manzoni, S. De Silvestri, and G. Cerullo, Opt. Lett. 33, 2901

(2008).

7) A. Sell, A. Leitenstorfer, and R. Huber, Opt. Lett. 33, 2767 (2008).

8) N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, Opt. Lett. 37, 4182

(2012).

9) M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and

R. Huber, Nature 523, 572 (2015).

10) Y. Sanari, T. Otobe, Y. Kanemitsu, and H. Hirori, Nat. Commun. 11, 3069 (2020).

11) C.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng, S.-D. Yang, M.-C. Chen, C.-C.

Hsu, and A. H. Kung, Optica 1, 400 (2014).

12) P. He, Y. Liu, K. Zhao, H. Teng, X. He, P. Huang, H. Huang, S. Zhong, Y. Jiang, S. Fang,

X. Hou, and Z. Wei, Opt. Lett. 42, 474 (2017).

13) J. E. Beetar, S. Gholam-Mirzaei, and M. Chini, Appl. Phys. Lett. 112, 051102 (2018).

14) C. Grebing, M. Müller, J. Buldt, H. Stark, and J. Limpert, Opt. Lett. 45, 6250 (2020).

15) Q. Bournet, F. Guichard, M. Natile, Y. Zaouter, M. Joffre, A. Bonvalet, I. Pupeza, C. Hofer,

F. Druon, M. Hanna, and P. Georges, Opt. Lett. 47, 261 (2022).

16) Q. Bournet, M. Jonusas, A. Zheng, F. Guichard, M. Natile, Y. Zaouter, M. Joffre, A.

Bonvalet, F. Druon, M. Hanna, and P. Georges, Opt. Lett. 47, 4885 (2022).

17) T. Nagy, S. Hädrich, P. Simon, A. Blumenstein, N. Walther, R. Klas, J. Buldt, H. Stark, S.

Breitkopf, P. Jójárt, I. Seres, Z. Várallyay, T. Eidam, and J. Limpert, Optica 6, 1423 (2019).

18) L. Arias, A. Longa, G. Jargot, A. Pomerleau, P. Lassonde, G. Fan, R. Safaei, P. B. Corkum,

F. Boschini, H. Ibrahim, and F. Légaré, Opt. Lett. 47, 3612 (2022).

19) Y. Sanari, H. Hirori, T. Aharen, H. Tahara, Y. Shinohara, K. L. Ishikawa, T. Otobe, P. Xia,

N. Ishii, J. Itatani, S. A. Sato, and Y. Kanemitsu, Phys. Rev. B 102, 041125(R) (2020).

20) K. Nakagawa, H. Hirori, Y. Sanari, F. Sekiguchi, R. Sato, M. Saruyama, T. Teranishi, and

Y. Kanemitsu, Phys. Rev. Mater. 5, 016001 (2021).

21) K. Nakagawa, H. Hirori, S. A. Sato, H. Tahara, F. Sekiguchi, G. Yumoto, M. Saruyama, R.

Sato, T. Teranishi, and Y. Kanemitsu, Nat. Phys. 18, 874 (2022).

22) F. Sekiguchi, G. Yumoto, H. Hirori, and Y. Kanemitsu, Phys. Rev. B 106, L241201 (2022).

23) N. Ishii, P. Xia, T. Kanai, and J. Itatani, Opt. Express 27, 11447 (2019).

24) Y. Sanari, F. Sekiguchi, K. Nakagawa, N. Ishii, Y. Kanemitsu, and H. Hirori, Opt. Lett. 46,

5280 (2021).

25) N. Kanda, N. Ishii, J. Itatani, and R. Matsunaga, Opt. Express 29, 3479 (2021).

26) R. W. Boyd, Nonlinear Optics (Academic Press, 2008), 3rd ed.

27) S. B. Penwell, L. Whaley-Mayda, and A. Tokmakoff, Opt. Lett. 43, 1363 (2018).

28) S. N. Smetanin, M. Jelínek, V. Kubeček, A. F. Kurus, V. N. Vedenyapin, S. I. Lobanov, and

L. I. Isaenko, Opt. Mater. Express 10, 1881 (2020).

29) B.-H. Chen, E. Wittmann, Y. Morimoto, P. Baum, and E. Riedle, Opt. Express 27, 21306

(2019).

30) M. Knorr, J. Raab, M. Tauer, P. Merkl, D. Peller, E. Wittmann, E. Riedle, C. Lange, and R.

Huber, Opt. Lett. 42, 4367 (2017).

31) L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).

Figure Captions

Fig. 1. (a) Experimental setup. (b) Measured (left) and retrieved (right) SHG-FROG traces

of the gate pulse. (c) Time-domain waveform of the retrieved gate pulse (left) and the

spectrum of the pulse after CM3 (right). Here, CM1: Edmund Optics (highly-dispersive

ultrafast mirror), GDD=−500 fs2 @ 1000–1060 nm; CM2: custom made, GDD ~ −50 fs2 @

725 nm–1325 nm, and CM3: Edmund Optics (ultra-broadband complementary chirped

mirror), GDD=−60 fs2 @ 650–1350 nm.

Fig. 2. (a) Phase-matching conditions in the LGS crystals for DFG (upper panel) and (b)

optical parametric amplification (lower panel). The phase-matching function |sinc(∆kL/2)| is

shown as functions of the phase-matching (PM) angle and the MIR wavelength.

Fig. 3. (a) MIR spectra before (upper panel) and (b) after the two-stage OPA (lower panel).

The red dots in the lower panel show the pulse energy. The inset shows the spatial beam

profile of the MIR beam at 6 m after the LGS (OPA2).

Fig. 4. (a) The time-domain waveform of the MIR pulse after the two-stage OPA. (b) The

Fourier transform of (a). (c) 2D map of 401 time-domain waveforms measured within 20

minutes (left) and the corresponding CEPs (right). (d) 2D map of 21 average time-domain

waveforms measured within 5 hours (left) and their CEPs (right).

10

Fig. 1.

11

Fig. 2.

12

Fig. 3.

13

Fig. 4.

14

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る