リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hard x-ray intensity autocorrelation using direct two-photon absorption」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hard x-ray intensity autocorrelation using direct two-photon absorption

Osaka, Taito 大阪大学

2022.03.18

概要

An intensity autocorrelation measurement is demonstrated to characterize a pulse duration of 9-keV x-ray free-electron laser (XFEL) pulses from a split-delay optical (SDO) system with four-bounce silicon 220 reflections in each branch. XFEL pulse replicas with variable time delays are generated by the SDO system itself. High intensity of >2 × 1016 W/cm2 achieved in a self-seeding operation and careful data analysis allow the measurement with direct two-photon absorption. The autocorrelation trace gave a duration of 7.6 ± 0.8 fs in full width at half maximum for a Gaussian assumption. Furthermore, the trace shows good agreement with a simulation of the XFEL pulse shape propagating through the SDO system, irrespective of spectral chirps in the original XFEL pulses. Our results open the door toward direct temporal characterization of narrowband XFELs at the hard x-ray regime, such as self-seeded and future cavity-based XFELs, and indicate a solid way for temporal tailoring of ultrafast x-ray pulses with perfect crystals.

この論文で使われている画像

参考文献

[1] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker et al., First lasing and operation of an ångstrom-wavelength free-electron laser, Nat. Photon. 4, 641 (2010).

[2] T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego, K. Fukami, T. Fukui, Y. Furukawa et al., A compact x-ray free-electron laser emitting in the sub-ångström region, Nat. Photon. 6, 540 (2012).

[3] H.-S. Kang, C.-K. Min, H. Heo, C. Kim, H. Yang, G. Kim, I. Nam, S. Y. Baek, H.-J. Choi, G. Mun et al., Hard x-ray free- electron laser with femtosecond-scale timing jitter, Nat. Photon. 11, 708 (2017).

[4] W. Decking, S. Abeghyan, P. Abramian, A. Abramsky, A. Aguirre, C. Albrecht, P. Alou, M. Altarelli, P. Altmann, K. Amyan et al., A MHz-repetition-rate hard x-ray free-electron laser driven by a superconducting linear accelerator, Nat. Photon. 14, 391 (2020).

[5] E. Prat, R. Abela, M. Aiba, A. Alarcon, J. Alex, Y. Arbelo, C. Arrell, V. Arsov, C. Bacellar, C. Beard et al., A compact and cost-effective hard x-ray free-electron laser driven by a high- brightness and low-energy electron beam, Nat. Photon. 14, 748 (2020).

[6] Z. Huang and K.-J. Kim, Review of x-ray free-electron laser theory, Phys. Rev. ST Accel. Beams 10, 034801 (2007).

[7] S. Gerber, S.-L. Yang, D. Zhu, H. Soifer, J. A. Sobota, S. Rebec, J. J. Lee, T. Jia, B. Moritz, C. Jia et al., Femtosecond electron-phonon lock-in by photoemission and x-ray free-electron laser, Science 357, 71 (2017).

[8] K. H. Kim, J. G. Kim, S. Nozawa, T. Sato, K. Y. Oang, T. W. Kim, H. Ki, J. Jo, S. Park, C. Song et al., Direct observation of bond formation in solution with femtosecond x-ray scattering, Nature (London) 518, 385 (2015).

[9] K. Tamasaku, E. Shigemasa, Y. Inubushi, T. Katayama, K. Sawada, H. Yumoto, H. Ohashi, H. Mimura, M. Yabashi, K. Yamauchi, and T. Ishikawa, X-ray two-photon absorption com- peting against single and sequential multiphoton processes, Nat. Photon. 8, 313 (2014).

[10] H. Yoneda, Y. Inubushi, K. Nagamine, Y. Michine, H. Ohashi, H. Yumoto, K. Yamauchi, H. Mimura, H. Kitamura, T. Katayama, T. Ishikawa, and M. Yabashi, Atomic inner-shell laser at 1.5-ångström wavelength pumped by an x-ray free- electron laser, Nature (London) 524, 446 (2015).

[11] See, for example, I. A. Walmsley and C. Dorrer, Characteriza- tion of ultrashort electromagnetic pulses, Adv. Opt. Photon. 1, 308 (2009).

[12] R. Mitzner, A. A. Sorokin, B. Siemer, S. Roling, M. Rutkowski, H. Zacharias, M. Neeb, T. Noll, F. Siewert, W. Eberhardt et al., Direct autocorrelation of soft-x-ray free-electron-laser pulses by time-resolved two-photon double ionization of He, Phys. Rev. A 80, 025402 (2009).

[13] J. A. Armstrong, Measurement of picosecond laser pulse widths, Appl. Phys. Lett. 10, 16 (1967).

[14] J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, and K. W. Wecht, Two-photon excitation of fluorescence by picosecond light pulses, Appl. Phys. Lett. 11, 216 (1967).

[15] R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Measur- ing ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating, Rev. Sci. Instrum. 68, 3277 (1997).

[16] H. Yoneda, Y. Inubushi, M. Yabashi, T. Katayama, T. Ishikawa, H. Ohashi, H. Yumoto, K. Yamauchi, H. Mimura, and H. Kitamura, Saturable absorption of intense hard x-rays in iron, Nat. Commun. 5, 5080 (2014).

[17] M. Fuchs, M. Trigo, J. Chen, S. Ghimire, S. Shwartz, M. Kozina, M. Jiang, T. Henighan, C. Bray, G. Ndabashimiye et al., Anomalous nonlinear x-ray Compton scattering, Nat. Phys. 11, 964 (2015).

[18] S. Ghimire, M. Fuchs, J. Hastings, S. C. Herrmann, Y. Inubushi, J. Pines, S. Shwartz, M. Yabashi, and D. A. Reis, Nonsequential two-photon absorption from the K shell in solid zirconium, Phys. Rev. A 94, 043418 (2016).

[19] T. Kroll, C. Weninger, R. Alonso-Mori, D. Sokaras, D. Zhu, L. Mercadier, V. P. Majety, A. Marinelli, A. Lutman, M. W. Guetg et al., Stimulated X-Ray Emission Spectroscopy in Transition Metal Complexes, Phys. Rev. Lett. 120, 133203 (2018).

[20] S. Shwartz, M. Fuchs, J. B. Hastings, Y. Inubushi, T. Ishikawa, T. Katayama, D. A. Reis, T. Sato, K. Tono, M. Yabashi, S. Yudovich, and S. E. Harris, X-Ray Second Harmonic Gener- ation, Phys. Rev. Lett. 112, 163901 (2014).

[21] K. Tamasaku, E. Shigemasa, Y. Inubushi, I. Inoue, T. Osaka, T. Katayama, M. Yabashi, A. Koide, T. Yokoyama, and T. Ishikawa, Nonlinear Spectroscopy with X-Ray Two-Photon Absorption in Metallic Copper, Phys. Rev. Lett. 121, 083901 (2018).

[22] T. Osaka, T. Hirano, Y. Morioka, Y. Sano, Y. Inubushi, T. Togashi, I. Inoue, K. Tono, A. Robert, K. Yamauchi, J. B. Hastings, and M. Yabashi, Characterization of temporal coher- ence of hard x-ray free-electron laser pulses with single-shot interferograms, IUCrJ 4, 728 (2017).

[23] D. Zhu, Y. Sun, D. W. Schafer, H. Shi, J. H. James, K. L. Gumerlock, T. O. Osier, R. Whitney, L. Zhang, J. Nicolas et al., Development of a hard x-ray split-delay system at the Linac Coherent Light Source, Proc. SPIE 10237, 102370R (2017).

[24] Y. Sun, N. Wang, S. Song, P. Sun, M. Chollet, T. Sato, T. B. van Driel, S. Nelson, R. Plumley, J. Montana-Lopez et al., Compact hard x-ray split-delay system based on variable-gap channel-cut crystals, Opt. Lett. 44, 2582 (2019).

[25] G. Grübel, G. B. Stephenson, C. Gutt, H. Sinn, and Th. Tschentscher, XPCS at the European x-ray free electron laser facility, Nucl. Instrum. Methods Phys. Res. B 262, 357 (2007).

[26] Y. Shinohara, T. Osaka, I. Inoue, T. Iwashita, W. Dmowski, C. W. Ryu, Y. Sarathchandran, and T. Egami, Split-pulse x-ray photon correlation spectroscopy with seeded x-rays from x-ray laser to study atomic-level dynamics, Nat. Commun. 11, 6213 (2020).

[27] Y. Inubushi, K. Tono, T. Togashi, T. Sato, T. Hatsui, T. Kameshima, K. Togawa, T. Hara, T. Tanaka, H. Tanaka, T. Ishikawa, and M. Yabashi, Determination of the Pulse Dura- tion of an X-Ray Free Electron Laser Using Highly Resolved Single-Shot Spectra, Phys. Rev. Lett. 109, 144801 (2012).

[28] Y. Inubushi, I. Inoue, J. Kim, A. Nishihara, S. Matsuyama, H. Yumoto, T. Koyama, K. Tono, H. Ohashi, K. Yamauchi, and M. Yabashi, Measurement of the x-ray spectrum of a free electron laser with a wide-range high-resolution single-shot spectrome- ter, Appl. Sci. 7, 584 (2017).

[29] C. Gutt, P. Wochner, B. Fischer, H. Conrad, M. Castro-Colin, S. Lee, F. Lehmkhler, I. Steinke, M. Sprung, W. Roseker et al., Single Shot Spatial and Temporal Coherence Properties of the SLAC Linac Coherent Light Source in the Hard X-Ray Regime, Phys. Rev. Lett. 108, 024801 (2012).

[30] C. Behrens, F.-J. Decker, Y. Ding, V. A. Dolgashev, J. Frisch, Z. Huang, P. Krejcik, H. Loos, A. Lutman, T. J. Maxwell et al., Few-femtosecond time-resolved measurements of x-ray free- electron lasers, Nat. Commun. 5, 3762 (2014).

[31] I. Inoue, T. Hara, Y. Inubushi, K. Tono, T. Inagaki, T. Katayama, Y. Amemiya, H. Tanaka, and M. Yabashi, X-ray Hanbury Brown-Twiss interferometry for determination of ultrashort electron-bunch duration, Phys. Rev. Accel. Beams 21, 080704 (2018).

[32] I. Inoue, K. Tamasaku, T. Osaka, Y. Inubushi, and M. Yabashi, Determination of x-ray pulse duration via intensity correlation measurements of x-ray fluorescence, J. Synchrotron Rad. 26, 2050 (2019).

[33] N. Hartmann, G. Hartmann, R. Heider, M. S. Wangner, M. Ilchen, J. Buck, A. O. Lindahl, C. Benko, J. Grünert, J. Krzywinski et al., Attosecond time-energy structure of x-ray free-electron laser pulses, Nat. Photon. 12, 215 (2018).

[34] J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings et al., Demonstration of self-seeding in a hard-x-ray free-electron laser, Nat. Photon. 6, 693 (2012).

[35] I. Inoue, T. Osaka, T. Hara, T. Tanaka, T. Inagaki, T. Fukui, S. Goto, Y. Inubushi, H. Kimura, R. Kinjo et al., Generation of narrow-band x-ray free-electron laser via reflection self- seeding, Nat. Photon. 13, 319 (2019).

[36] K. Tono, T. Togashi, Y. Inubushi, T. Sato, T. Katayama, K. Ogawa, H. Ohashi, H. Kimura, S. Takahashi, K. Takeshita et al., Beamline, experimental stations and photon beam diagnostics for the hard x-ray free electron laser of SACLA, New. J. Phys. 15, 083035 (2013).

[37] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevResearch.4.L012035 for the details of the re- flection self-seeding mode of operation, the split-delay optical system, and examples of detector images, which includes Refs. [38–43].

[38] T. Osaka, I. Inoue, R. Kinjo, T. Hirano, Y. Morioka, Y. Sano, K. Yamauchi, and M. Yabashi, A micro channel-cut crystal x-ray monochromator for a self-seeded hard x-ray free-electron laser, J. Synchrotron Rad. 26, 1496 (2019).

[39] S. Matsumura, T. Osaka, I. Inoue, S. Matsuyama, M. Yabashi, K. Yamauchi, and Y. Sano, High-resolution micro channel- cut crystal monochromator processed by plasma chemical vaporization machining for a reflection self-seeded x-ray free- electron laser, Opt. Express 28, 25706 (2020).

[40] T. Hirano, T. Osaka, Y. Sano, Y. Inubushi, S. Matsuyama, K. Tono, T. Ishikawa, M. Yabashi, and K. Yamauchi, Development of speckle-free channel-cut crystal optics using plasma chem- ical vaporization machining for coherent x-ray applications, Rev. Sci. Instrum. 87, 063118 (2016).

[41] K. Tono, T. Kudo, M. Yabashi, T. Tachibana, Y. Feng, D. Fritz, J. Hastings, and T. Ishikawa, Single-shot beam-position monitor for x-ray free-electron laser, Rev. Sci. Instrum. 82, 023108 (2011).

[42] T. Hirano, T. Osaka, Y. Morioka, Y. Sano, Y. Inubushi, T. Togashi, I. Inoue, S. Matsuyama, K. Tono, A. Robert et al., Performance of a hard x-ray split-and-delay optical system with a wavefront division, J. Synchrotron Rad. 25, 20 (2018).

[43] S. Shastri, P. Zambianchi, and D. Mills, Dynamical diffraction of ultrashort x-ray free-electron laser pulses, J. Synchrotron Rad. 8, 1131 (2001).

[44] H. Yumoto, H. Mimura, T. Koyama, S. Matsuyama, K. Tono, T. Togashi, Y. Inubushi, T. Sato, T. Tanaka, T. Kimura et al., Fo- cusing of x-ray free-electron laser pulses with reflective optics, Nat. Photon. 7, 43 (2013).

[45] T. Kameshima, S. Ono, T. Kudo, K. Ozaki, Y. Kirihara, K. Kobayashi, Y. Inubushi, M. Yabashi, T. Horigome, A. Holland et al., Development of an x-ray pixel detector with multi-port charge-coupled device for x-ray free-electron laser experiments, Rev. Sci. Instrum. 85, 033110 (2014).

[46] T. Katayama, T. Hirano, Y. Morioka, Y. Sano, T. Osaka, S. Owada, T. Togashi, and M. Yabashi, X-ray optics for ad- vanced ultrafast pump-probe x-ray experiments at SACLA, J. Synchrotron Rad. 26, 333 (2019).

[47] F. Livet, F. Bley, J. Mainville, R. Caudron, S. G. J. Mochrie, E. Geissler, G. Dolino, D. Abernathy, G. Grübel, and M. Sutton, Using direct illumination CCDs as high-resolution area de- tectors for x-ray scattering, Nucl. Instrum. Meth. A 451, 596 (2000).

[48] I. Inoue, Y. Inubushi, T. Osaka, J. Yamada, K. Tamasaku, H. Yoneda, and M. Yabashi, Shortening X-Ray Pulse Dura- tion via Saturable Absorption, Phys. Rev. Lett. 127, 163903 (2021).

[49] A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford University Press, Oxford, 2001).

[50] S. Roling, H. Zacharias, L. Samoylova, H. Sinn, Th. Tschentscher, O. Chubar, A. Buzmakov, E. Schneidmiller, M. V. Yurkov, F. Siewert, S. Braun, and P. Gawlitza, Time-dependent wave front propagation simulation of a hard x-ray split-and- delay unit: towards a measurement of the temporal coherence properties of x-ray free electron lasers, Phys. Rev. ST Accel. Beams 17, 110705 (2014).

[51] S. Huang, Y. Ding, Y. Feng, E. Hemsing, Z. Huang, J. Krzywinski, A. A. Lutman, A. Marinelli, T. J. Maxwell, and D. Zhu, Generating Single-Spike Hard X-Ray Pulses with Non- linear Bunch Compression in Free-Electron Lasers, Phys. Rev. Lett. 119, 154801 (2017).

[52] K.-J. Kim, Yu. Shvyd’ko, and S. Reiche, A Proposal for an X- Ray Free-Electron Laser Oscillator with an Energy-Recovery Linac, Phys. Rev. Lett. 100, 244802 (2008).

[53] G. Marcus, A. Halavanau, Z. Huang, J. Krzywinski, J. MacArthur, R. Margraf, T. Raubenheimer, and D. Zhu, Refrac- tive Guide Switching a Regenerative Amplifier Free-Electron Laser for High Peak and Average Power Hard X Rays, Phys. Rev. Lett. 125, 254801 (2020).

[54] H. Johann, Die Erzeugung lichtstarker Röntgenspektren mit Hilfe von Konkavkristallen, Z. Phys. 69, 185 (1931).

[55] T. Johansson, Über ein neuartiges, genau fokussierendes Rönt- genspektrometer, Z. Phys. 82, 507 (1933).

[56] K. D. Irwin and G. C. Hilton, Transition-Edge Sensors (Springer, Berlin Heidelberg, 2005).

[57] J. Yamada, S. Matsuyama, R. Hirose, Y. Takeda, Y. Kohmura, M. Yabashi, K. Omote, T. Ishikawa, and K. Yamauchi, Compact full-field hard x-ray microscope based on advanced Kirkpatrick-Baez mirrors, Optica 7, 367 (2020).

[58] F. Salin, P. Georges, G. Roger, and A. Brun, Single- shot measurement of a 52-fs pulse, Appl. Opt. 26, 4528 (1987).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る