リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「U snRNA の成熟と分解の分子機構の研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

U snRNA の成熟と分解の分子機構の研究

川本, 崇仁 京都大学 DOI:10.14989/doctor.k23049

2021.03.23

概要

真核生物中に複数種存在するU snRNP の適切な機能は、mRNA前駆体のスプライシング反応に必須である。したがって、U snRNPの成熟過程、および品質管理機構についての正しい知識は、真核生物の遺伝子発現機構のより深い理解に繋がるだろう。本研究は、ヒトU snRNP成熟過程の一つである「U snRNA前駆体の3’末端の成熟」を行う因子 (以下、Trimmer) の同定を当初の目的とした。その手始めとして3’末端の成熟の試験管内反応系を構築し、その反応が、唯一のTrimmer の報告例であるTOE1 に依存したものかを評価した。その結果、活性の一部はTOE1に依存しておらず、少なくとも試験管内でTrimmer として機能できる因子がTOE1 以外にも存在することが示唆された。そこで、この試験管内の活性を司るタンパク質を生化学的手法により精製した。その結果、Trimmer の候補タンパク質として、ISG20 および、EXO10 を含むRNA exosome複合体を獲得した。しかしながら、各因子のノックダウン条件下のヒト培養細胞において、U1 snRNAの3’末端形成への影響は認められず、これらの候補因子をT rimmerと結論する結果は得られなかった。しかしながら、さらなる研究によって、U snRNAと、通常分解されると考えられるU1 variant の各新生鎖が、候補因子のノックダウンにより顕著に蓄積することが明らかになった。これらの結果は、ISG20やEXO1 0、およびEXO10を含むRNA exosome複合体が、3’末端の成熟ではなく、異常なU snRN Aが生成してしまったときにそれらを分解して、RNAの品質管理を行う因子であることを示唆した。本研究では当初の目的は達成できなかったが、U snRNAの生合成に関わると考えられる新規因子の同定に成功した。

参考文献

Adachi H. & Yu Y. T. (2014). Insight into the mechanisms and functions of spliceosomal snRNA pseudouridylation. World J Biol Chem. 5, 398-408. https://doi.org/10.4331/wjbc.v5.i4.398

Allmang C., Kufel J., Chanfreau G., Mitchell P., Petfalski E. & Tollervey D. (1999). Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18, 5399-5410. https://doi.org/10.1093/emboj/18.19.5399

Allmang C., Petfalski E., Podtelejnikov, A., Mann M., Tollervey D. & Mitchell P. (1999). The yeast exosome and human PM–Scl are related complexes of 3ʹ → 5ʹ exonucleases. Genes Dev. 13, 2148–2158. https://doi.org/10.1101/gad.13.16.2148

Aly H. H., Suzuki J., Watashi K., Chayama K., Hoshino S., Hijikata M., …, Wakita T. (2016). RNA Exosome Complex Regulates Stability of the Hepatitis B Virus X-mRNA Transcript in a Non-stop-mediated (NSD) RNA Quality Control Mechanism. J Biol Chem. 291, 15958- 15974. https://doi.org/10.1074/jbc.m116.724641

Baillat D., Hakimi M. A., Näär A. M., Shilatifard A., Cooch N. & Shiekhattar R. (2005). Integrator, a Multiprotein Mediator of Small Nuclear RNA Processing, Associates with the C- Terminal Repeat of RNA Polymerase II. Cell 123, 265-76. https://doi.org/10.1016/j.cell.2005.08.019

Berget S. M., Moore C. & Sharp P. A. (1977). Spliced segments at the 5' terminus of adenovirus 2 late mRNA. PNAS. 74, 3171-5. https://doi.org/10.1073/pnas.74.8.3171

Berglund J. A., Abovich N. & Rosbash M. (1998). A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Genes Dev. 12, 858–867. https://doi.org/10.1101/gad.12.6.858

Berk A. J. (2016). Discovery of RNA splicing and genes in pieces. PNAS. 113, 801-805. https://doi.org/10.1073/pnas.1525084113

Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114-2120. https://doi.org/10.1093/bioinformatics/btu170

Brody E. & Abelson J. (1985). The "spliceosome": yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science 228, 963-967. https://doi.org/10.1126/science.3890181

Burge C. B., Padgett R. A. & Sharp P. A. (1998). Evolutionary fates and origins of U12-type introns. Mol Cell. 2, 773-785. https://doi.org/10.1016/s1097-2765(00)80292-0

Chanfreau G., Elela S. A., Ares M. Jr. & Guthrie C. (1997). Alternative 3'-end processing of U5 snRNA by RNase III. Genes Dev. 11, 2741-2751. https://doi.org/10.1101/gad.11.20.2741

Chow L. T., Gelinas R. E., Broker T. R. & Roberts R. J. (1977). An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA. Cell 12, 1-8. https://doi.org/10.1016/0092-8674(77)90180-5

Crick F. H. (1958). On protein synthesis. Symp Soc Exp Biol. 12, 138-63.

Davis C. A. & Ares M. Jr. (2006). Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae.

De Maio F. A., Risso G., Iglesias N. G., Shah P., Pozzi B., Gebhard L. G., …, Gamarnik A. V. (2016). The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLoS Pathog. 12, e1005841. https://doi.org/10.1371/journal.ppat.1005841

Denison R. A. & Weiner A. M. (1982). Human U1 RNA pseudogenes may be generated by both DNA- and RNA-mediated mechanisms. Mol Cell Biol. 2, 815–828. https://dx.doi.org/10.1128%2Fmcb.2.7.815

Dietrich R. C., Incorvaia R. & Padgett R. A. (1997). Terminal intron dinucleotide sequences do not distinguish between U2- and U12-dependent introns. Mol Cell. 1, 151-160. https://doi.org/10.1016/s1097-2765(00)80016-7

Doma M. K. & Parker R. (2007). RNA quality control in eukaryotes. Cell 131, 660-668. https://doi.org/10.1016/j.cell.2007.10.041

Domdey H., Apostol B., Lin R. J., Newman A., Brody E. & Abelson J. (1984). Lariat structures are in vivo intermediates in yeast pre-mRNA splicing. Cell 39, 611-621. https://doi.org/10.1016/0092-8674(84)90468-9

Du H. & Rosbash M. (2002). The U1 snRNP protein U1C recognizes the 5ʹ splice site in the absence of base pairing. Nature 419, 86–90. https://doi.org/10.1038/nature00947

Egecioglu D. E., Henras A. K. & Chanfreau G. F. (2006). Contributions of Trf4p- and Trf5p- dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome. RNA 12, 26-32. https://doi.org/10.1261/rna.2207206

Eliceiri G. L. & Sayavedra M. S. (1976). Small RNAs in the nucleus and cytoplasm of HeLa cells. Biochem Biophys Res Commun. 72, 507-512. https://doi.org/10.1016/s0006- 291x(76)80070-8

Espert L., Eldin P., Gongora C., Bayard B., Harper F., Chelbi-Alix M. K., … Mechti N. (2006). The exonuclease ISG20 mainly localizes in the nucleolus and the Cajal (Coiled) bodies and is associated with nuclear SMN proteim-containing complexes. J Cell Biochem. 98, 1320-1333. https://doi.org/10.1002/jcb.20869

Flytzanis C., Alonso A., Louis C., Krieg L. & Sekeris C. E. (1978). Association of small nuclear RNA with HnRNA isolated from nuclear RNP complexes carrying HnRNA. FEBS Lett. 96, 201-206. https://doi.org/10.1016/0014-5793(78)81094-1

Frilander M. J. & Steitz J. A. (1999). Initial recognition of U12-dependent introns requires both U11/5' splice-site and U12/branchpoint interactions. Genes Dev. 13, 851-863. https://doi.org/10.1101/gad.13.7.851

Gongora C., David G., Pintard L., Tissot C., Hua T. D., Dejean A. & Mechti N. (1997). Molecular cloning of a new interferon-induced PML nuclear body-associated protein. J Biol Chem. 272, 19457–19463. https://doi.org/10.1074/jbc.272.31.19457

Grabowski P. J., Seiler S. R. & Sharp P. A. (1985). A multicomponent complex is involved in the splicing of messenger RNA precursors. Cell 42, 345-353. https://doi.org/10.1016/s0092-8674(85)80130-6

Hamm J. & Mattaj I. W. (1990). Monomethylated Cap Structures Facilitate RNA Export from the Nucleus. Cell 63, 109-118. https://doi.org/10.1016/0092-8674(90)90292-M

He H., Liyanarachchi S., Akagi K., Nagy R., Li J., Dietrich R. C., P., …, de la Chapelle A. (2011). Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science 332, 238-240. https://doi.org/10.1126/science.1200587

Henry R. W., Mittal V., Ma B., Kobayashi R. & Hernandez N. (1998). SNAP19 mediates the assembly of a functional core promoter complex (SNAPc) shared by RNA polymerases II and III. Genes Dev. 12, 2664–2672. https://dx.doi.org/10.1101%2Fgad.12.17.2664

Hopper A. K. & Nostramo R. T. (2019). tRNA Processing and Subcellular Trafficking Proteins Multitask in Pathways for Other RNAs. Front Genet. 10, 1-14. 10.3389/fgene 2019.00096 2019 Feb 20;10:96.

Huber J., Cronshagen U., Kadokura M., Marshallsay C., Wada T., Sekine M., Lührmann R. (1998). Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J. 17, 4114-26. https://doi.org/10.1093/emboj/17.14.4114

Jády B. E., Darzacq X., Tucker K. E., Matera A. G., Bertrand E. & Kiss T. (2003). Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J. 22, 1878-1888. https://doi.org/10.1093/emboj/cdg187

Januszyk K., Liu Q. & Lima C. D. (2011). Activities of human RRP6 and structure of the human RRP6 catalytic domain. RNA 17, 1566-1577. https://doi.org/10.1261/rna.2763111

Jia H., Wang X., Liu F., Guenther U. P., Srinivasan S., Anderson J. T., & Jankowsky E. (2011). The RNA helicase Mtr4p modulates polyadenylation in the TRAMP complex. Cell 145, 890– 901. https://doi.org/10.1016/j.cell.2011.05.010

Jiang D., Weidner J. M., Qing M., Pan X. B., Guo H., Xu C., …, Guo J. T. (2010). Identification of five interferon-induced cellular proteins that inhibit west Nile virus and dengue virus infection. J Virol. 84, 8332-8341. https://doi.org/10.1128/jvi.02199-09

Kaida D., Berg M. G., Younis I., Kasim M., Singh L. N., Wan L. & Dreyfuss G. (2010). U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468, 664- 668. https://doi.org/10.1038/nature09479

Kalisiak K., Kuliński T. M., Tomecki R., Cysewski D., Pietras Z., Chlebowski A., …, Dziembowski A. (2016). A short splicing isoform of HBS1L links the cytoplasmic exosome and SKI complexes in humans. NAR. 45, 2068-2080. https://doi.org/10.1093/nar/gkw862

Kambach C., Walke S., Young R., Avis J. M., de la Fortelle E., Raker V. A., … Nagai K. (1999). Crystal Structures of Two Sm Protein Complexes and Their Implications for the Assembly of the Spliceosomal snRNPs. Cell 96, 375-87. https://doi.org/10.1016/S0092-8674(00)80550-4

Karijolich J. & Yu Y. T. (2010). Spliceosomal snRNA modifications and their function. RNA Biol. 7, 192-204. https://doi.org/10.4161/rna.7.2.11207

Katz R. A., Jack-Scott E., Narezkina A., Palagin I., Boimel P., Kulkosky J. …, Skalka A. M. (2007). High-frequency epigenetic repression and silencing of retroviruses can be antagonized by histone deacetylase inhibitors and transcriptional activators, but uniform reactivation in cell clones is restricted by additional mechanisms. J Virol. 81, 2592-2604. https://doi.org/10.1128/jvi.01643-06

Kilchert C., Wittmann S. & Vasiljeva L. (2016). The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol. 17, 227-239. https://doi.org/10.1038/nrm.2015.15

Kleinschmidt A. M. & Pederson T. (1987). Accurate and Efficient 3' Processing of U2 Small Nuclear RNA Precursor in a Fractionated Cytoplasmic Extract. Mol Cell Biol. 7, 3131-3137. https://doi.org/10.1128/mcb.7.9.3131

Kolossova I. & Padgett R. A. (1997). U11 snRNA interacts in vivo with the 5' splice site of U12- dependent (AU-AC) pre-mRNA introns. RNA 3, 227-233. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1369475/

Ku C. C., Che X. B., Reichelt M., Rajamani J., Schaap-Nutt A., Huang K. J., …, Arvin A.M. (2011). Herpes simplex virus-1 induces expression of a novel MxA isoform that enhances viral replication. Immunol. Cell Biol. 89, 173-82. https://doi.org/10.1038/icb.2010.83

Lacava J., Houseley J., Saveanu C., Petfalski E., Thompson E., Jacquier A. & Tollervey D. (2005). RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713–724 (2005).

Langmead B., Trapnell C., Pop M., Salzberg S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25. https://doi.org/10.1186/gb-2009-10 3-r25

Lardelli R. M. & Andersen J. L. (2020). Competition between maturation and degradation drives human snRNA 3’ end quality control. Genes Dev. 34, 989-1001. https://doi.org/10.1101/gad.336891.120

Lardelli R. M., Schaffer A. E., Eggens V. R., Zaki M. S., Grainger S., Sathe S. … Gleeson J. G. (2017). Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nat Genet. 49, 457-464. https://doi.org/10.1038/ng.3762

Lerner M. R., Boyle J. A., Mount S. M., Wolin S. L. & Steitz J. A. (1980). Are snRNPs involved in splicing? Nature 283, 220-224. https://doi.org/10.1038/283220a0

Lerner M. R. & Steitz J. A. (1979). Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 76, 5495-5499. https://doi.org/10.1073/pnas.76.11.5495

Li Q., Lee J. A. & Black D. L. (2007). Neuronal regulation of alternative pre-mRNA splicing. Nat Rev Neurosci. 8, 819-31. https://doi.org/10.1038/nrn2237

Lubas M., Christensen M. S., Kristiansen M. S., Domanski M., Falkenby L. G., Lykke-Andersen S.,…, Jensen T. H. (2011). Interaction profiling identifies the human nuclear exosome targeting complex. Mol Cell. 43, 624-37. https://doi.org/10.1016/j.molcel.2011.06.028

MacMillan A. M., Query C. C., Allerson C. R., Chen S., Verdine G. L. & Sharp P. A. (1994). Dynamic association of proteins with the pre-mRNA branch region. Genes Dev. 8, 3008–3020. https://doi.org/10.1101/gad.8.24.3008

Madore S. J., Wieben E. D. & Pederson T. (1984). Intracellular site of U1 small nuclear RNA processing and ribonucleoprotein assembly. J Cell Biol. 98, 188-192. https://doi.org/10.1083/jcb.98.1.188

Massenet S., Pellizzoni L., Paushkin S., Mattaj I. W. & Dreyfuss G. (2002). The SMN Complex Is Associated with snRNPs throughout Their Cytoplasmic Assembly Pathway. Mol Cell Biol. 27, 1686-1695. https://doi.org/10.1128/mcb.22.18.6533-6541.2002

Matera A. G. & Wang Z. (2014). A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 15, 108-121. https://doi.org/10.1038/nrm3742

Mattaj I. W. (1986). Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding. Cell 46, 905-911. https://doi.org/10.1016/0092-8674(86)90072-3

Mitchell P., Petfalski E., Houalla R., Podtelejnikov A., Mann M. & Tollervey D. (2003). Rrp47p Is an Exosome-Associated Protein Required for the 3’ Processing of Stable RNAs. Mol Cell Biol. 23, 6982–6992. https://doi.org/10.1128/mcb.23.19.6982-6992.2003

Mitchell P., Petfalski E., Shevchenko A., Mann M., Tollervey D. (1997). The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell 91, 457–466. https://doi.org/10.1016/s0092-8674(00)80432-8

Mouaikel J., Narayanan U., Verheggen C., Matera A.G., Bertrand E., Tazi J. & Bordonné R. (2003). Interaction between the small-nuclear-RNA cap hypermethylase and the spinal muscular atrophy protein, survival of motor neuron. EMBO Rep. 4, 616–622. https://doi.org/10.1038/sj.embor.embor863

Murphy J. T., Burgess R. R., Dahlberg J. E. & Lund E. (1982). Transcription of a gene for human U1 small nuclear RNA. Cell 29, 265-274. https://doi.org/10.1016/0092-8674(82)90111-8

Murphy M. W., Olson B. L. & Siliciano P. G. (2004). The yeast splicing factor Prp40p contains functional leucine-rich nuclear export signals that are essential for splicing. Genetics 166, 53-65. doi: 10.1534/genetics.166.1.53. https://doi.org/10.1534/genetics.166.1.53

Nesic D., Tanackovic G. & Krämer A. (2004). A role for Cajal bodies in the final steps of U2 snRNP biogenesis. J Cell Sci. 117, 4423-4433. https://doi.org/10.1242/jcs.01308

Neubauer G., King A., Rappsilber J., Calvio C., Watson M., Ajuh P., …, Mann M. (1998). Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet. 20, 46-50. https://doi.org/10.1038/1700

Neuman de Vegvar H. E. & Dahlberg J. E. (1990). Nucleocytoplasmic Transport and Processing of Small Nuclear RNA Precursors. Mol Cell Biol. 10, 3365-3375. https://doi.org/10.1128/mcb.10.7.3365

Nguyen L. H., Espert L., Mechti N. & Wilson D. M. (2001). The Human Interferon- and Estrogen- Regulated ISG20/HEM45 Gene Product Degrades Single-Stranded RNA and DNA in Vitro. Biochemistry 40, 7174-7179. https://doi.org/10.1021/bi010141t

Ohno M. Segref A., Bachi A., Wilm M. & Mattaj I. W. (2000). PHAX, a Mediator of U snRNA Nuclear Export Whose Activity Is Regulated by Phosphorylation. Cell 101, 187-198. https://doi.org/10.1016/S0092-8674(00)80829-6

O'Reilly D., Dienstbier M., Cowley S. A., Vazquez P., Drozdz M., Taylor S., … Murphy S. (2013). Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res. 23, 281-291. https://doi.org/10.1101/gr.142968.112

Padgett R. A., Mount S. M., Steitz J. A. & Sharp P. A. (1983). Splicing of messenger RNA precursors is inhibited by antisera to small nuclear ribonucleoprotein. Cell 35, 101-107. https://doi.org/10.1016/0092-8674(83)90212-x

Palacios I., Hetzer M., Adam S. A. & Mattaj I. W. (1997). Nuclear import of U snRNPs requires importin beta. EMBO J. 16, 6783-6792. https://doi.org/10.1093/emboj/16.22.6783

Pozzi B., Bragado L., Mammi P., Torti M. F., Gaioli N., Gebhard L. G., …, Srebrow A. (2020). Dengue virus targets RBM10 deregulating host cell splicing and innate immune response. NAR. 48, 6824-6838. https://doi.org/10.1093/nar/gkaa340

Preker P., Nielsen J., Kammler S., Lykke-Andersen S., Christensen M. S., Mapendano C. K., … Jensen T. H. (2008). RNA Exosome Depletion Reveals Transcription Upstream of Active Human Promoters. Science 322, 1851-1854. https://doi.org/10.1126/science.1164096

Raghunathan P. L. & Guthrie C. (1998). RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr Biol. 8, 847–855. https://doi.org/10.1016/s0960-9822(07)00345-4

Reddy R. (1988). Transcription of a U6 small nuclear RNA gene in vitro. Transcription of a mouse U6 small nuclear RNA gene in vitro by RNA polymerase III is dependent on transcription factor(s) different from transcription factors IIIA, IIIB, and IIIC. J Biol Chem. 263, 15980- 15984.

Reddy R. & Busch H. (1988). Small nuclear RNAs: RNA sequences, structure, and modifications. In Structure and function of major and minor small nuclear ribonucleoprotein particles (ed. Birnstiel ML), pp. 1–37. Springer-Verlag, Heidelberg, Germany.

Reddy R., Ro-Choi T. S., Henning D. & Busch H. (1974). Primary sequence of U-1 nuclear ribonucleic acid of Novikoff hepatoma ascites cells. J Biol Chem. 25, 6486-6494.

Ruskin B., Krainer A. R., Maniatis T. & Green M. R. (1984). Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38, 317-331. https://doi.org/10.1016/0092-8674(84)90553-1

Sakharkar M. K., Chow V. T. K. & Kangueane P. (2004). Distributions of exons and introns in the human genome. In Silico Biol. 4, 387-93.

Seipelt R. L., Zheng B., Asuru A. & Rymond B. C. (1999). U1 snRNA is cleaved by RNase III and processed through an Sm site-dependent pathway. NAR. 27, 587-595. https://doi.org/10.1093/nar/27.2.587

Shi Y. (2017). Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol. 18, 655-670. https://doi.org/10.1038/nrm.2017.86

Shukla S. & Parker R. (2014). Quality control of assembly-defective U1 snRNAs by decapping and 5'-to-3' exonucleolytic digestion. PNAS. 111, E3277-3286. https://doi.org/10.1073/pnas.1412614111

Smith K. P. & Lawrence J. B. (2000). Interactions of U2 gene loci and their nuclear transcripts with Cajal (coiled) bodies: evidence for PreU2 within Cajal bodies. Mol Biol Cell. 11, 2987- 2998. https://doi.org/10.1091/mbc.11.9.2987

Son A., Park J. E. & Kim V. N. (2018). PARN and TOE1 Constitute a 3’ End Maturation Module for Nuclear Non-coding RNAs. Cell Rep. 23, 888–898. https://doi.org/10.1016/j.celrep.2018.03.089

Steinmetz E. J., Conrad N. K., Brow D. A. & Corden J. L. (2001). RNA-binding protein Nrd1 directs poly(A)-independent 3ʹ-end formation of RNA polymerase II transcripts. Nature 413, 327-331. https://doi.org/10.1038/35095090

Sun J. S. & Manley J. L. (1995). A novel U2-U6 snRNA structure is necessary for mammalian mRNA splicing. Genes Dev. 9, 843–854. https://doi.org/10.1101/gad.9.7.843

Suzuki T., Izumi H. & Ohno M. (2010). Cajal body surveillance of U snRNA export complex assembly. J Cell Biol. 190, 603-612. https://doi.org/10.1083/jcb.201004109

Taniguchi I., Mabuchi N. & Ohno M. (2014). HIV-1 Rev protein specifies the viral RNA export pathway by suppressing TAP/NXF1 recruitment. NAR. 42 6645-6658. https://doi.org/10.1093/nar/gku304

Tomecki R., Kristiansen M. S., Lykke-Andersen S., Chlebowski A., Larsen K. M., Szczesny R. J., … Jensen T. H. (2010). The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J. 29, 2342–2357. https://doi.org/10.1038/emboj.2010.121

Turunen J. J., Niemelä E. H., Verma B. & Frilander M. J. (2013). The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA. 4, 61-76. https://doi.org/10.1002/wrna.1141

Uguen P. & Murphy S. (2003). The 3' ends of human pre-snRNAs are produced by RNA polymerase II CTD-dependent RNA processing. EMBO J. 22, 4544-4554. https://doi.org/10.1093/emboj/cdg430

Van Hoof A., Lennertz P. & Parker R. (2000a). Yeast Exosome Mutants Accumulate 3’-Extended Polyadenylated Forms of U4 Small Nuclear RNA and Small Nucleolar RNAs. Mol Cell Biol. 20, 441–452. https://doi.org/10.1128/mcb.20.2.441-452.2000

Van Hoof A., Lennertz P. & Parker R. (2000b). Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J. 19, 1357-1365. https://doi.org/10.1093/emboj/19.6.1357

Voith von Voithenberg L., Sánchez-Rico C., Kang H. S., Madl T., Zanier K., Barth A., …, Lamb D. C. (2016). Recognition of the 3ʹ splice site RNA by the U2AF heterodimer involves a dynamic population shift. PNAS 113, E7169-E7175. https://doi.org/10.1073/pnas.1605873113

Wagner E., Clement S.L. & Andersen J.L. (2007). An unconventional human Ccr4-Caf1 deadenylase complex in nuclear cajal bodies. Mol Cell Biol. 27, 1686-1695. https://doi.org/10.1128/mcb.01483-06

Weinberg R. A. & Penman S. (1968). Small molecular weight monodisperse nuclear RNA. J Mol Biol. 38, 289-304. https://doi.org/10.1016/0022-2836(68)90387-2

Weiss C. M., Trobaugh D. W., Sun C., Lucas T. M., Diamond M. S., Ryman K. D. & Klimstra W. B. (2018). The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins. mSphere. 3, e00209-18. https://doi.org/10.1128/msphere.00209-18

Wlotzka W., Kudla G., Granneman S. & Tollervey D. (2011). The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J. 30, 1790–1803. https://doi.org/10.1038/emboj.2011.97

Wu N., Nguyen X. N., Wang L., Appourchaux R., Zhang C., Panthu B., …, Cimarelli A. (2019). The interferon stimulated gene 20 protein (ISG20) is an innate defense antiviral factor that discriminates self versus non-self translation. PLoS Pathog. 15, e1008093. https://doi.org/10.1371/journal.ppat.1008093

Yong J., Kasim M., Bachorik J. L., Wan L. & Dreyfuss G. (2010). Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis. Mol Cell. 38, 551-562. https://doi.org/10.1016/j.molcel.2010.03.014

Zheng Z., Wang L. & Pan J. (2017). Interferon-stimulated gene 20-kDa protein (ISG20) in infection and disease: Review and outlook. Intractable Rare Dis Res. 6, 35-40. https://doi.org/10.5582/irdr.2017.01004

Zhou Z., Wang N., Woodson S. E., Dong Q., Wang J., Liang Y., …, Li K. (2011). Antiviral activities of ISG20 in positive- strand RNA virus infections. Virology 409, 175–188. https://doi.org/10.1016/j.virol.2010.10.008

Zhuang Y. & Weiner A. M. (1986). A compensatory base change in U1 snRNA suppresses a 5' splice site mutation. Cell 46, 827-35. https://doi.org/10.1016/0092-8674(86)90064-4

Zuo P. & Maniatis T. (1996). The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev. 10, 1356- 1368. https://doi.org/10.1101/gad.10.11.1356

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る