リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Efficient use of the nitrile functionality as a gateway to diversified peptide bond synthesis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Efficient use of the nitrile functionality as a gateway to diversified peptide bond synthesis

Wang Xiaoling 東北大学

2022.09.26

概要

Peptides and proteins play a plethora of functional and structural roles in biological system. The great significance of peptides and proteins is supported by their abundant natural presence and strong relevance with living cells and organisms. A protein consists of one peptide or several peptides with special conformational structure and a peptide chain is a sequence of amino acids with amide junctures between the carboxylic acid and amine (Figure 1). They are produced in living systems through a series of smooth and well-organized production lines that originate in DNA. Starting from interpreting the genetic information in DNA to mRNA, the synthesis of peptide chains by an orderly assembly of proteinogenic amino acids at ribosomes takes place according to the genetic order from mRNA. This process is called translation, by which a polypeptide is produced. The polypeptide product is further transported to posttranslational modifications. The real synthetic and modification stories of proteins are far more complex than what can be described here, which is a result of the abundance of genes, the sequential diversity, the length of a peptide chain and so on. Statistically, for example, in humans, millions of proteomes are thought to be producible arising from ∼20, 000 human genes.1

Enzymes are involved in each step of the ribosomal synthesis and post-translational modifications of peptides, which indicates nicely that proteins are the irreplaceable necessities in living biological entities. In addition, peptide hormones which structurally are either peptide or protein are also good examples to have a closer look at the role of peptides and proteins. For example, human vasopressin, a peptide hormone with 9 amino acids, is also called antidiuretic hormone (ADH), arginine vasopressin (AVP) or argipressin (Figure 2).2 It’s a hormone synthesized from the AVP gene as a peptide prohormone in neurons in the hypothalamus, and is converted to AVP. Vasopressin regulates the tonicity of body fluids.

この論文で使われている画像

参考文献

Chapter1

1. Kulkarni, S., Sayers, J., Premdjee, B. et al. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat Rev Chem 2, 0122 (2018). DOI: 10.1038/s41570-018- 0122.

2. Sukhov, R.R., Walker, L.C., Rance, N.E., Price, D.L., Young, WS. Vasopressin and oxytocin gene expression in the human hypothalamus. J. Comp. Neurol. 1993, 337, 295–306.

3. Okuda-Ashitaka, E., Minami, T., Tachibana, S., Yoshihara, Y., Nishiuchi, Y., Kimura, T., Ito, S. Nocistatin, a peptide that blocks nociceptin action in pain transmission. Nature 1998, 392, 286–289.

4. Isidro-Llobet, A., Kenworthy, M.N., Mukherjee, S., Kopach, M.E. Wegner, K., Gallou, F., Smith, A.G., Roschangar, F. Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. J. Org. Chem. 2019, 84, 4615−4628.

5. Henninot, A.; Collins, J. C.; Nuss, J. M. The current state of peptide drug discovery: back to the future? J. Med. Chem. 2018, 61, 1382.

6. (a) Bucheit, J. D.; Pamulapati, L. G.; Carter, N.; Malloy, K.; Dixon, D. L.; Sisson, E. M. Oral Semaglutide: A Review of the First Oral Glucagon-Like Peptide 1 Receptor Agonist. Diabetes Technol. Ther. 2020, 22, 10−18. (b) Pratley, R.; Amod, A.; Hoff, S. T.; Kadowaki, T.; Lingvay, I.; Nauck, M.; Pedersen, K. B.; Saugstrup, T.; Meier, J. J. PIONEER 4 investigators. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, doubleblind, phase 3a trial. Lancet 2019, 394, 39−50. (c) Hedrington, M. S.; Davis, S. N. Oral semaglutide for the treatment of type 2 diabetes. Expert Opin. Pharmacother. 2019, 20, 133−141.

7. Fischer, E., Fourneau, E. Ueber einige Derivate des Glykokolls. Ber. Dtsch. Chem. Ges. 1901, 34, 2868–2879.

8. Kimmerlin, T., Seebach, D. ‘100 years of peptide synthesis’: ligation methods for peptide and protein synthesis with applications to b-peptide assemblies. J. Peptide Res., 2005, 65, 229–260.

9. El-Faham, A., Albericio, F. Peptide Coupling Reagents, More than a Letter Soup. Chem. Rev. 2011, 111, 6557–6602.

10. Merrifield, R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149–2154.

11. (a) Fusetani, N.; Matsunaga, S. Bioactive sponge peptides. Chem. Rev. 1993, 93, 1793–1806. (b) Davidson, B. S. Ascidians: producers of amino acid-derived metabolites. Chem. Rev. 1993, 93, 1771–1791.

12. Revilla-López, G.; Torras, J.; Curcó, D.; Casanovas, J.; Calaza, M. I.; Zanuy, D.; Jiménez, A. I.; Cativiela, C.; Nussinov, R.; Grodzinski, P.; Alemán, C. NCAD, a Database Integrating the Intrinsic Conformational Preferences of Non-coded Amino Acids. J. Phys. Chem. B 2010, 114, 7413–7422.

13. Wenger, R. M. Synthesis of Cyclosporine and Analogues: Structural Requirements for Immunosuppressive Activity. Angew. Chem. Int. Ed. 1985, 24, 77-85.

14. Sammes, P. G.; Weller, D. J. Steric Promotion of Ring Formation. Synthesis 1995, 1205.

15. Agouridas, V., Mahdi, O. El., Diemer, V., Cargoet, M., Monbaliu, J. C. M., Melnyk, O. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations. Chem. Rev. 2019, 119, 7328.

16. Bednarek, C., Wehl, I., Jung, N., Schepers, U., Bräse, S. The Staudinger ligation. Chem. Rev. 2020, 120, 4301.

17. Bode, J. W. Chemical protein synthesis with the α-ketoacid–hydroxylamine ligation. Acc. Chem. Res. 2017, 50, 2104. 18. Liu, H., Li, X. Serine/threonine ligation: origin, mechanistic aspects, and applications. Acc. Chem. Res. 2018, 51, 1643.

Chapter2

1. (a) L. M. Sanders and R. W. Hendren, Protein Delivery: Physical Systems, Springer US, New York, 2002; (b) J. Koch and M. Mahler, Peptide Arrays on Membrane Supports: Synthesis and Applications, Springer-Verlag Berlin Heidelberg, 2002; (c) S. Bobone, Peptide and Protein Interaction with Membrane Systems: Applications to Antimicrobial Therapy and Protein Drug Delivery, Springer International Publishing Switzerland, 2014; (d) L. Olivares-Quiroz, O. Guzmán-López and H. E. Jardón-Valadez, Physical Biology of Proteins and Peptides: theory, experiment, and simulation, Springer International Publishing Switzerland, 2015.

2. (a) N. Sewald and H. D. Jakubke, Peptides: Chemistry and Biology, Wiley-VCH, Weinheim, 2009; (b) O. Iranzo and A. C. Roque, Peptide and Protein Engineering: From Concepts to Biotechnological Applications, Springer US, 2020; Selected reviews on peptide and protein chemistry: (c) T. Kimmerlin and D. Seebach, J. Peptide Res., 2005, 65, 229; (d) D. M. M. Jaradat, Amino Acids, 2018, 50, 39.

3. B. L. Nilsson, M. B. Soellner and R. T. Raines, Annu. Rev. Biophys. Biomol. Struct., 2005, 34, 91.

4. Selected reviews on amide bond synthesis, see: (a) V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480, 471; (b) R. M. de Figueiredo, J. S. Suppo and J. M. Campagne, Chem. Rev., 2016, 116, 12029. Selected reviews on coupling agents directed amide formation, see: (a) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606; (b) F. Albericio and A. El-Faham, Chem. Rev., 2011, 111, 6557; (c) L. Hu and J. Zhao, Synlett, 2017, 28, 1663; (d) F. Albericio and A. El-Faham, Org. Process Res. Dev., 2018, 22, 760.

6. Selected examples of recently Lewis acid-catalyzed amide formation, see: (a) H. Noda, M. Furutachi, Y. Asada, M. Shibasaki and N. Kumagai, Nat. Chem., 2017, 9, 571; (b) W. Muramatsu, T. Hattori and H. Yamamoto, J. Am. Chem. Soc., 2019, 141, 12288; (c) W. Muramatsu and H. Yamamoto, J. Am. Chem. Soc., 2019, 141, 18926; (d) W. Muramatsu, T. Hattori and H. Yamamoto, Bull. Chem. Soc. J., 2020, 93, 759.

7. (a) P. E. Dawson, T. W. Muir, I. Clark-Lewis and S. B. Kent, Science, 1994, 266, 776; (b) V. Agouridas, O. El. Mahdi, V. Diemer, M. Cargoet, J. C. M. Monbaliu and O. Melnyk, Chem. Rev., 2019, 119, 7328.

8. (a) B. L. Nilsson, L. L. Kiessling and R. T. Raines, Org. Lett., 2000, 2, 1939; (b) E. Saxon, J. I. Armstrong and C. R. Bertozzi, Org. Lett., 2000, 2, 2141; (c) E. Saxon and C. R. Bertozzi, Science, 2000, 287, 2007; (d) E. Saxon, S. J. Luchansky, H. C. Hang, S. C. Lee and C. R. Bertozzi, J. Am. Chem. Soc., 2002, 124, 14893; (e) M. Kohn and R. Breinbauer, Angew. Chem. Int. Ed., 2004, 43, 3106; (f) C. Bednarek, I. Wehl, N. Jung, U. Schepers and S. Bräse, Chem. Rev., 2020, 120, 4301.

9. (a) J. W. Bode, R. M. Fox and K. D. Baucom, Angew. Chem. Int. Ed., 2006, 45, 1248; (b) I. Pusterla and J. W. Bode, Angew. Chem. Int. Ed., 2012, 51, 513; (c) C. E. Murar, F. Thuaud and J. W. Bode, J. Am. Chem. Soc., 2014, 136, 18140; (d) T. J. Harmand, C. E. Murar and J. W. Bode, Nature Protocols, 2016, 11, 1130; (e) F. Rohrbacher, A. Zwicky and J. W. Bode, Chem. Sci., 2017, 8, 4051; (f) G. N. Boross, S. Shimura, M. Besenius, N. Tennagels, K. Rossen, M. Wagner and J. W. Bode, Chem. Sci., 2018, 9, 8388.

10. Oxidative amidation from alcohol and aldehyde: (a) W. J. Yoo and C. J. Li, J. Am. Chem. Soc., 2006, 128, 13064; (b) C. Gunanathan, Y. Ben-David and D. Milstein, Science, 2007, 317, 790; (c) L. U. Nordstrom, H. Vogt and R. Madsen, J. Am. Chem. Soc., 2008, 130, 17672; (d) J. Gao and G. W. Wang, J. Org. Chem., 2008, 73, 2955; Oxidative amidation from alkyne: (e) W. K. Chan, C. M. Ho, M. K. Wong and C. M. Che, J. Am. Chem. Soc., 2006, 128, 14796.

11. (a) J. Li, M. J. Lear, Y. Kawamoto, S. Umemiya, A. R. Wong, E. Kwon, I. Sato and Y. Hayashi, Angew. Chem. Int. Ed., 2015, 54, 12986; (b) J. Li, M. J. Lear, E. Kwon and Y. Hayashi, Chem. Eur. J., 2016, 22, 5538; (c) J. Li, M. J. Lear and Y. Hayashi, Angew. Chem. Int. Ed., 2016, 55, 9060; (d) J. Li, M. J. Lear and Y. Hayashi, Chem. Commun., 2018, 54, 6360.

12. (a) B. Shen, D. M. Makley and J. N. Johnston, Nature, 2010, 465, 1027; (b) J. Shackleford, B. Shen and J. N. Johnston, Proc. Natl. Acad. Sci., 2012, 109, 44; (c) K. E. Schwieter and J. N. Johnston, Chem. Commun., 2016, 52, 152; (d) M. Knowe, S. V. Tsukanov and J. N. Johnston, Org. Synth., 2017, 94, 388; (e) M. Crocker, H. Foy, K. Tokumaru, T. Dudding, M. Pink and J. N. Johnston, Chem, 2019, 5, 1248; (f) M. N. Vishe and J. N. Johnston, Chem. Sci., 2019, 10, 1138.

13. J. Rademann, Angew. Chem. Int. Ed., 2004, 43, 4554.

14. Aminomethylene propanedinitrile is commercially available. (a) C. B. Mishra, R. K. Mongre, S. Kumari, D. K. Jeong and M. Tiwari, RSC Adv., 2016, 6, 24491; (b) S. M. Schmitt, K. Stefan and M. Wiese, J. Med. Chem., 2016, 59, 3018.

15. Pbf = 2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-sulfonyl

16. (a) Ishihara, K., Ohara, S. Yamamoto, H. J. Org. Chem. 1996, 61, 4196 – 4197. (b) Tang, P. Org. Synth. 2005, 81, 262 – 268. (c) Arnold, K., Davies, B., Giles, R., Grosjean, C., Smith, G., Whiting, A. To Catalyze or not to Catalyze? Insight into Direct Amide Bond Formation from Amines and Carboxylic Acids under Thermal and Catalyzed Conditions. Adv. Synth. Catal. 2006, 348, 813 – 820. (d) Al-Zoubi, R., Marion, O., Hall, D. G. Direct and Waste-Free Amidations and Cycloadditions by Organocatalytic Activation of Carboxylic Acids at Room Temperature. Angew. Chem. Int. Ed. 2008, 47, 2876 – 2879; (e) Marcelli, T. Mechanistic Insights into Direct Amide Bond Formation Catalyzed byBoronic Acids: Halogens as Lewis Bases. Angew. Chem. Int. Ed. 2010, 49, 6840 –6843.

17. Gunanathan, C., Ben-David, Y., Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science 2007, 317, 790–792.

18. Yoo, W.-J., Li, C.-J. Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts. J. Am. Chem. Soc. 2006, 128, 13064–13065.

19. T-HYDRO is the trademark name of a tert-butyl hydroperoxide solution in water (70 wt % in H2O).

20. De Sarkar, S., Studer, A. Oxidative amidation and azidation of aldehydes by NHC catalysis. Org. Lett. 2010, 12, 1992–1995.

21. Bode, J. W., Sohn, S. S. N-Heterocyclic carbene-catalyzed redox amidations of -functionalized aldehydes with amines. J. Am. Chem. Soc. 2007, 129, 13798–13799.

22. Chan, W.-K., Ho, C.-M., Wong, M.-K., Che, C.-M. Oxidative amide synthesis and N-terminal aamino group ligation of peptides in aqueous medium. J. Am. Chem. Soc. 2006, 128, 14796–14797.

Chapter3

1. Sewald, N.; Jakubke, H. D. Peptides: Chemistry and Biology, 2nd ed.; Wiley, 2009.

2. Wieland, T.; Bodanszky, M. The World of Peptides: A Brief History of Peptide Chemistry; Springer, 1991.

3. Umeno, T.; Ueda, A.; Doi, M.; Kato, T.; Oba, M.; Tanaka, M. Helical Foldamer-Catalyzed Enantioselective 1,4-Addition Reaction of Dialkyl Malonates to Cyclic Enones. Tetrahedron Lett. 2019, 60, 151301.

4. Metrano, A. J.; Chinn, A. J.; Shugrue, C. R.; Stone, E. A.; Kim, B.; Miller, S. J. Asymmetric Catalysis Mediated by Synthetic Peptides, version 2.0: Expansion of Scope & Mechanisms. Chem. Rev. 2020, 120, 11479–11615.

5. Noisier, A. F.; Brimble, M. A. C–H Functionalization in the Synthesis of Amino Acids and Peptides. Chem. Rev. 2014, 114, 8775–8806.

6. Malonis, R. J. J.; Lai, R.; Vergnolle, O. Peptide-based Vaccines: Current Progress and Future Challenges. Chem. Rev. 2020, 120, 3210–3229.

7. Rojas, F.; Silvester, E.; Young, J.; Milne, R.; Tettey, M.; Houston, D. R.; Walkinshaw, M. D.; PerezPi, I.; Auer, M.; Denton, H.; Smith, T. K.; Thompson, J.; Matthews, K. R. Oligopeptide Signaling Through TbGPR89 Drives Trypanosome Quorum Sensing. Cell 2019, 176, 306–317.

8. Katyal, P.; Meleties, M.; Montclare, J. K. Self-Assembled Protein- and Peptide-Based Nanomaterials. ACS Biomater. Sci. Eng. 2019, 5, 4132–4147.

9. Walsh, T. R.; Knecht, M. R. Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chem. Rev. 2017, 117, 12641–12704.

10. Hauser, C. A. E.; Zhang, S. Peptides as Biological Semiconductors. Nature 2010, 468, 516–517.

11. Muttenthaler, M.; King, G. F.; Adams, D. J.; Alewood, P. F. Trends in Peptide Drug Discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325.

12. Apostolopoulos, V.; Bojarska, J.; Chai, T-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O. P.; Parhiz, H.; Perera, C. O.; Pickholz, M.; Remko, M.; Saviano, M.; Skwarczynski, M.; Tang, Y.; Wolf, W. M.; Yoshiya, T.; Zabrocki, J.; Zielenkiewicz, P.; AlKhazindar, M.; Barriga, V.; Kelaidonis, K.; Sarasia, E. M.; Toth, I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430.

13. Vinogradov, A. A.; Yin, Y.; Suga, H. Macrocyclic Peptides as Drug Candidates: Recent Progress and Remaining Challenges. J. Am. Chem. Soc. 2019, 141, 4167−4181.

14. Henninot, A.; Collins, J. C.; Nuss, J. M. The Current State of Peptide Drug Discovery: Back to the Future? J. Med. Chem. 2018, 61, 1382–1414.

15. Hancock, R. E. W.; Sahl, H.-G. Antimicrobial and Host-Defense Peptides as New Anti-Infective Therapeutic Strategies. Nat. Biotechnol. 2006, 24, 1551–1557.

16. Revilla-López, G.; Torras, J.; Curcó, D.; Casanovas, J.; Calaza, M. I.; Zanuy, D.; Jiménez, A. I.; Cativiela, C.; Nussinov, R.; Grodzinski, P.; Alemán, C. NCAD, a Database Integrating the Intrinsic Conformational Preferences of Non-coded Amino Acids. J. Phys. Chem. B 2010, 114, 7413–7422.

17. Banerjee, R.; Basu, G.; Roy, S.; Chène, P. Aib-Based Peptide Backbone as Scaffolds for Helical Peptide Mimics. J. Peptide Res. 2002, 60, 88–94.

18. Toniolo, C.; Formaggio, F.; Kaptein, B.; Broxterman, Q. B. You Are Sitting on a Gold Mine! Synlett 2006, 1295–1310.

19. Wada, S.; Tsuda, H.; Okada, T.; Urata, H. Cellular Uptake of Aib-Containing Amphipathic Helix Peptide. Bioorg. Med. Chem. Lett. 2011, 21, 5688−5691.

20. Yamaguchi, H.; Kodama, H.; Osada, S.; Kato, F.; Jelokhani-Niaraki, M.; Kondo, M. Effect of - Dialkyl Amino Acids on the Protease Resistance of Peptides. Biosci. Biotechnol. Biochem. 2003, 67, 2269–2272.

21. Chatterjee, J.; Rechenmacher, F.; Kessler, H. N-Methylation of Peptides and Proteins: An Important Element for Modulating Biological Functions. Angew. Chem. Int. Ed. 2013, 52, 254–269.

22. Chatterjee, J.; Gilon, C.; Hoffman, A.; Kessler, H. N-Methylation of Peptides: A New perspective in Medicinal Chemistry. Acc. Chem. Res. 2008, 41, 1331–1342.

23. Li, Y.; Li, W.; Xu, Z. Improvement on Permeability of Cyclic Peptide/Peptidomimetic: Backbone NMethylation as a Useful Tool. Mar. Drugs 2021, 19, 311.

24. Hyslop, J. F.; Lovelock, S. L.; Watson, A. J. B.; Sutton, P. W.; Roiban, G-D. N-Alkyl--Amino Acids in Nature and Their Biocatalytic Preparation. J. Biotechnol. 2019, 293, 56–65.

25. Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion, C. Control of Peptide Conformation by the Thorpe–Ingold Effect (C -Tetrasubstitution). Biopolymers (Pept Sci) 2001, 60, 396–419.

26. Alemán, C. Conformational Properties of -Amino Acids Disubstituted at the -Carbon. J. Phys. Chem. B 1997, 101, 5046–5050.

27. Crisma, M.; Toniolo, C. Helical Screw-Sense Preferences of Peptides Based on Chiral, C - Tetrasubstituted -Amino Acids. Biopolymers (Pept Sci) 2015, 104, 46–64.

28. Nagaraj, R.; Balaram, P. Alamethicin, A Transmembrane Channel. Acc. Chem. Res. 1981, 14, 356– 362.

29. Yamaguchi, H.; Kodama, H.; Osada, S.; Jelokhani-Niaraki, M.; Kato, F.; Kondo, M. The Position of Aib Residues Defines the Antimicrobial Activity of Aib-Containing Peptides. Bull. Chem. Soc. Jpn. 2002, 75, 1563–1568.

30. Kato, T.; Oba, M.; Nishida, K.; Tanaka, M. Cell-Penetrating Helical Peptides Having L-Arginines and Five-Membered Ring -Disubstituted -Amino Acids. Bioconjugate Chem. 2014, 25, 1761– 1768.

31. Miller, S. M.; Simon, R. J.; Ng, S.; Zuckermann, R. N.; Kerr, J. M.; Moos, W. H. Comparison of the Proteolytic Susceptibilities of Homologous L-Amino Acid, D-Amino Acid, and N-Substituted Glycine Peptide and Peptoid Oligomer. Drug Dev. Res. 1995, 35, 20–32.

32. Kwon, Y-U.; Kodadek, T. Quantitative evaluation of the relative cell permeability of peptoids and peptides. J. Am. Chem. Soc. 2007, 129, 1508–1509.

33. (a) Obrecht, D.; Heimgartner, H. 3-(Dimethylamino)-2,2-dimethyl-2H-azirine as an Aib Equivalent; Synthesis of Aib Oligopeptides. Helv. Chim. Acta 1987, 70, 102-115. (b) Schäfer, G.; Bode, J. W. Synthesis of Sterically Hindered N-Acylated Amino Acids from N-Carboxyanhydrides. Org. Lett. 2014, 16, 1526-1529. (c) Lee, H-J.; Huang, X.; Sakaki, S.; Maruoka, K. Metal-Free Approach for Hindered Amide-Bond Formation with Hypervalent Iodine(III) Reagents: Application to Hindered Peptide Synthesis. Green Chem. 2021, 23, 848–855.

34. Otake, Y.; Shibata, Y.; Hayashi, Y.; Kawauchi, S.; Nakamura, H.; Fuse, S. N-Methylated Peptide Synthesis via Generation of an Acyl N-Methylimidazolium Cation Accelerated by a Brønsted Acid. Angew. Chem. Int. Ed. 2020, 59, 12925–12930.

35. Kurasaki, H.; Nagaya, A.; Kobayashi, Y.; Matsuda, A.; Matsumoto, M.; Morimoto, K.; Taguri, T.; Takeuchi, H.; Handa, M.; Cary, D. R.; Nishizawa, N.; Masuya, K. Isostearyl Mixed Anhydrides for the Preparation of N-Methylated Peptides Using C-Terminally Unprotected N-Methylamino Acids. Org. Lett. 2020, 22, 8039−8043.

36. Humphrey, J. M.; Chamberlin, A. R. Chemical Synthesis of Natural Product Peptides: Coupling Methods for the Incorporation of Noncoded Amino Acids into Peptides. Chem. Rev. 1997, 97, 2243– 2266.

37. Katritzky, A. R.; Todadze, E.; Angrish, P.; Draghici, B. Efficient Peptide Coupling Involving Sterically Hindered Amino Acids. J. Org. Chem. 2007, 72, 5794–5801.

38. Brown, Z. Z.; Schafmeister, C. E. Exploiting an Inherent Neighboring Group Effect of -Amino Acids to Synthesize Extremely Hindered Dipeptides. J. Am. Chem. Soc. 2008, 130, 14382–14383.

39. Rao, Y., Li, X.; Danishefsky, S. J. Thio FCMA Intermediates as Strong Acyl Donors: A General Solution to the Formation of Complex Amide Bonds. J. Am. Chem. Soc. 2009, 131, 12924–12926.

40. Li, J.; Lear, M. J.; Hayashi, Y. Sterically Demanding Oxidative Amidation of -Substituted Malononitriles with Amines Using O2. Angew. Chem. Int. Ed. 2016, 55, 9060–9064.

41. Wang, X.; Li, J.; Hayashi, Y. Oxidative Peptide Bond Formation of Glycine-Amino Acid Using 2- (Aminomethyl)malononitrile as a Glycine Unit. Chem. Commun. 2021, 57, 4283–4286.

42. Gaumont, A-C.; Gulea, M.; Levillain, J. Overview of the Chemistry of 2-Thiazolines. Chem. Rev. 2009, 109, 1371–1401.

43. Vallee, Y.; Shalayel, I.; Ly, K-D.; Rao, K.V. R.; Paëpe, G. D.; Märker, K.; Milet, A. At the Very Beginning of Life on Earth: the Thiol-Rich Peptide (TRP) World Hypothesis. Int. J. Dev. Biol. 2017, 61, 471–478.

44. Martínez, V.; Davyt, D. Total Syntheses of Bacillamide C and Neobacillamide A; Revision of Their Absolute Configurations. Tetrahedron: Asymmetry 2013, 24, 1572–1575.

45. Foden, C. S.; Islam, S.; Fernández-García, C.; Maugeri, L.; Sheppard, T. D.; Powner, M. W. Prebiotic Synthesis of Cysteine Peptides that Catalyze Peptide Ligation in Neutral Water. Science 2020, 370, 865–869.

46. Walling, C.; Rabinowitz, R. The Reaction of Thiyl Radicals with Trialkyl Phosphites. J. Am. Chem. Soc. 1957, 79, 5326−5326.

47. Humphrey, R. E.; Potter, J. L. Reduction of Disulfides with Tributylphosphine. Anal. Chem. 1965, 37, 164-165.

48. Rohde, H.; Schmalisch, J.; Harpaz, Z.; Diezmann, F.; Seitz, O. Ascorbate as An Alternative to Thiol Additives in Native Chemical Ligation. ChemBioChem 2011, 12, 1396−1400.

49. Isidro-Llobet, A.; Kenworthy, M. N.; Mukherjee, S.; Kopach, M. E.; Wegner, K.; Gallou, F.; Smith, A. G.; Roschangar, F. Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. J. Org. Chem. 2019, 84, 4615−4628.

50. See the supporting information for details.

51. Wan, Q.; Danishefsky, S. J. Free-Radical-Based, Specific Desulfurization of Cysteine: A Powerful Advance in the Synthesis of Polypeptides and Glycopolypeptides. Angew. Chem. Int. Ed. 2007, 46, 9248–9252. 52. De Bo, G.; Gall, M. A. Y.; Kuschel, S.; Winter, J. D.; Gerbaux, P.; Leigh, D. A. An Artificial Molecular Machine that Builds An Asymmetric Catalyst. Nat. Nanotechnol. 2018, 13, 381–385.

Chapter4

1. Kulkarni, S., Sayers, J., Premdjee, B. et al. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat Rev Chem 2, 0122 (2018). DOI: 10.1038/s41570-018- 0122.

2. Dawson, P., Muir, T., Clark-Lewis, I., Kent, S. Synthesis of proteins by native chemical ligation. Science 1994, 266, 776.

3. Agouridas, V., Mahdi, O. El., Diemer, V., Cargoet, M., Monbaliu, J. C. M., Melnyk, O. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations. Chem. Rev. 2019, 119, 7328.

4. Agouridas, V., El Mahdi, O., Cargoet, M., Melnyk, O. A statistical view of protein chemical synthesis using NCL and extended methodologies. Bioorg. Med. Chem. 2017, 25, 4938.

5. (a) Newberry, R. W., Orke, S. J., Raines, R. T. n→π* Interactions are competitive with hydrogen bonds. Org. Lett. 2016, 18, 3614. (b) Bartlett, G. J., Choudhary, A., Raines, R. T., Woolfson, D. N. n→π* Interactions in proteins. Nat. Chem. Biol. 2010, 6, 615. (c) Newberry, R. W., Raines, R. T. The n→π* Interaction. Acc. Chem. Res. 2017, 50, 1838.

6. (a) Staudinger, H., Meyer, J. New organic compounds of phosphorus III. Phosphinemethylene derivatives and phosphinimines. Helv. Chim. Acta 1919, 2, 635. (b) Bernardes, G. J. L., Linderoth, L., Doores, K. J., Boutureira, O., Davis, B. G. Site-selective traceless Staudinger ligation for glycoprotein synthesis reveals scope and limitations. ChemBioChem 2011, 12, 1383. (c) Bednarek, C., Wehl, I., Jung, N., Schepers, U., Bräse, S. The Staudinger ligation. Chem. Rev. 2020, 120, 4301.

7. (a) Bode, J. W., Fox, R. M., Baucom, K. D. Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and -ketoacids. Angew. Chem. Int. Ed. 2006, 45, 1248. (b) Pusterla, I., Bode, J. W. The mechanism of the α-ketoacid−hydroxylamine (KAHA) amide forming ligation. Angew. Chem., Int. Ed. 2012, 51, 513. (c) Bode, J. W. Chemical protein synthesis with the α-ketoacid–hydroxylamine ligation. Acc. Chem. Res. 2017, 50, 2104.

8. (a) Li, X., Lam, H. Y., Zhang, Y., Chan, C. K. Salicylaldehyde ester-induced chemoselective peptide ligations: enabling generation of natural peptidic linkages at the serine/threonine sites. Org. Lett. 2010, 12, 1724. (b) Wong, C. T. T., Li, T., Lam, H. Y., Zhang, Y., Li, X. Realizing serine/threonine ligation: scope and limitations and mechanistic implication thereof. front. Front Chem. 2014, 2, 28. (c) Liu, H., Li, X. Serine/threonine ligation: origin, mechanistic aspects, and applications. Acc. Chem. Res. 2018, 51, 1643.

9. (a) Gaumont, A-C., Gulea, M., Levillain, J. Overview of the chemistry of 2-thiazolines. Chem. Rev. 2009, 109, 1371. (b) Martínez, V., Davyt, D. Total syntheses of Bacillamide C and Neobacillamide A; Revision of their absolute configurations. Tetrahedron: Asymmetry 2013, 24, 1572. (c) Vallee, Y., Shalayel, I., Ly, K-D., Rao, K.V. R., Paëpe, G. D., Märker, K., Milet, A. At the very beginning of life on earth: the thiol-rich peptide (TRP) world hypothesis. Int. J. Dev. Biol. 2017, 61, 471.

10. Foden, C. S., Islam, S., Fernández-García, C., Maugeri, L., Sheppard, T. D., Powner, M. W. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 2020, 370, 865.

11. Christy, M. P., Johnson, T., McNerlin, C. D., Woodard, J., Nelson, A. T., Lim, B., Hamilton, T. L., Freiberg, K. M., Siegel, D. Total synthesis of Micrococcin P1 through scalable thiazole forming reactions of cysteine derivatives and nitriles. Org. Lett. 2020, 22, 2365.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る