リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「MYC–MAX heterodimerization is essential for the induction of major zygotic genome activation and subsequent preimplantation development」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

MYC–MAX heterodimerization is essential for the induction of major zygotic genome activation and subsequent preimplantation development

Yamamoto, Takuto Wang, Haoxue Sato, Hana Honda, Shinnosuke Ikeda, Shuntaro Minami, Naojiro 京都大学 DOI:10.1038/s41598-023-43127-5

2023.09.25

概要

In mouse preimplantation development, zygotic genome activation (ZGA), which synthesizes new transcripts in the embryo, begins in the S phase at the one-cell stage, with major ZGA occurring especially at the late two-cell stage. Myc is a transcription factor expressed in parallel with ZGA, but its direct association with major ZGA has not been clarified. In this study, we found that developmental arrest occurs at the two-cell stage when mouse embryos were treated with antisense oligonucleotides targeting Myc or MYC-specific inhibitors from the one-cell stage. To identify when MYC inhibition affects development, we applied time-limited inhibitor treatment and found that inhibition of MYC at the one-cell, four-cell, and morula stages had no effect on preimplantation development, whereas inhibitor treatment at the two-cell stage arrested development at the two-cell stage. Furthermore, transcriptome analysis revealed that when MYC function was inhibited, genes expressed in the major ZGA phase were suppressed. These results suggest that MYC is essential for the induction of major ZGA and subsequent preimplantation development. Revealing the function of MYC in preimplantation development is expected to contribute to advances in assisted reproductive technology.

この論文で使われている画像

参考文献

1. Blackwood, E. M. & Eisenman, R. N. Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex

with Myc. Science 251, 1211–1217 (1991).

2. Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

3. Zhang, K. & Smith, G. W. Maternal control of early embryogenesis in mammals. Reprod. Fertil. Dev. 27, 880–896 (2015).

4. Tadros, W. & Lipshitz, H. D. The maternal-to-zygotic transition: A play in two acts. Development 136, 3033–3042 (2009).

5. Li, L., Zheng, P. & Dean, J. Maternal control of early mouse development. Development 137, 859–870 (2010).

6. Aoki, F., Worrad, D. M. & Schultz, R. M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296–307 (1997).

Scientific Reports |

(2023) 13:16011 |

https://doi.org/10.1038/s41598-023-43127-5

11

Vol.:(0123456789)

www.nature.com/scientificreports/

7. Minami, N., Suzuki, T. & Tsukamoto, S. Zygotic gene activation and maternal factors in mammals. J. Reprod. Dev. 53, 707–715

(2007).

8. Schulz, K. N. & Harrison, M. M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 20, 221–234 (2018).

9. Jukam, D., Shariati, S. A. M. & Skotheim, J. M. Zygotic genome activation in vertebrates. Dev. Cell 42, 316–332 (2017).

10. Zeng, F. & Schultz, R. M. RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev. Biol.

283, 40–57 (2005).

11. Suzuki, T., Abe, K. I., Inoue, A. & Aoki, F. Expression of c-MYC in nuclear speckles during mouse oocyte growth and preimplantation development. J. Reprod. Dev. 55, 491–495 (2009).

12. Paria, B. C., Dey, S. K. & Andrews, G. K. Antisense c-myc effects on preimplantation mouse embryo development. Proc. Natl. Acad.

Sci. USA 89, 10051 (1992).

13. Davis, A. C., Wims, M., Spotts, G. D., Hann, S. R. & Bradley, A. A null c-myc mutation causes lethality before 10.5 days of gestation

in homozygotes and reduced fertility in heterozygous female mice. Genes Dev. 7, 671–682 (1993).

14. Asami, M. et al. A program of successive gene expression in mouse one-cell embryos. Cell Rep. 42, 112023 (2023).

15. Kinisu, M. et al. Klf5 establishes bi-potential cell fate by dual regulation of ICM and TE specification genes. Cell Rep. 37, 109982

(2021).

16. Aoki, F. Zygotic gene activation in mice: Profile and regulation. J. Reprod. Dev. 68, 79 (2022).

17. Gambini, A. et al. Developmentally programmed tankyrase activity upregulates β-catenin and licenses progression of embryonic

genome activation. Dev. Cell 53, 545-560.e7 (2020).

18. Krepelova, A., Neri, F., Maldotti, M., Rapelli, S. & Oliviero, S. Myc and max genome-wide binding sites analysis links the Myc

regulatory network with the polycomb and the core pluripotency networks in mouse embryonic stem cells. PLoS ONE 9, 88933

(2014).

19. Arand, J. et al. Tet enzymes are essential for early embryogenesis and completion of embryonic genome activation. EMBO Rep.

23, e53968 (2022).

20. Park, S. J., Shirahige, K., Ohsugi, M. & Nakai, K. DBTMEE: A database of transcriptome in mouse early embryos. Nucleic Acids

Res. 43, D771 (2015).

21. Malynn, B. A. et al. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev.

14, 1390 (2000).

22. Müller, I. et al. Targeting of the MYCN protein with small molecule c-MYC inhibitors. PLoS ONE 9, e97285 (2014).

23. Fletcher, S. & Prochownik, E. V. Small-molecule inhibitors of the Myc oncoprotein. Biochim. Biophys. Acta Gene Regul. Mech.

1849, 525–543 (2015).

24. Abe, K. et al. Minor zygotic gene activation is essential for mouse preimplantation development. Proc. Natl. Acad. Sci. 115, E6780–

E6788 (2018).

25. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56 (2012).

26. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115 (2003).

27. Dang, C. V. MYC on the path to cancer. Cell 149, 22 (2012).

28. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined

factors. Cell 126, 663–676 (2006).

29. Fu, X., Wu, X., Djekidel, M. N. & Zhang, Y. Myc and Dnmt1 impede the pluripotent to totipotent state transition in embryonic

stem cells. Nat. Cell Biol. 21, 835 (2019).

30. AVMA Guidelines for the Euthanasia of Animals. https://​www.​avma.​org/​sites/​defau​lt/​files/​2020-​02/​Guide​lines-​on-​Eutha​nasia-​

2020.​pdf (2020).

31. Minami, N., Sasaki, K., Aizawa, A., Miyamoto, M. & Imai, H. Analysis of gene expression in mouse 2-cell embryos using fluorescein

differential display: Comparison of culture environments. Biol. Reprod. 64, 30–35 (2001).

32. Ho, Y., Wigglesworth, K., Eppig, J. J. & Schultz, R. M. Preimplantation development of mouse embryos in KSOM: Augmentation

by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41, 232–238 (1995).

33. Shikata, D., Yamamoto, T., Honda, S., Ikeda, S. & Minami, N. H4K20 monomethylation inhibition causes loss of genomic integrity

in mouse preimplantation embryos. J. Reprod. Dev. 66, 411–419 (2020).

34. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.

Methods 25, 402–408 (2001).

35. Yin, X., Giap, C., Lazo, J. S. & Prochownik, E. V. Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene

22, 6151–6159 (2003).

36. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

37. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

38. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, 1–9 (2008).

39. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15 (2013).

40. Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC

Bioinform. 12, 323 (2011).

41. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome

Biol. 15, 550 (2014).

42. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics

resources. Nat. Protoc. 4, 44–57 (2009).

43. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional

analysis of large gene lists. Nucleic Acids Res. 37, 1 (2009).

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (no. 19H03136 to NM) and a Grant-in-Aid

for JSPS Fellows (no. 21J21840 to TY) from the Japan Society for the Promotion of Science.

Author contributions

T.Y., H.W., S.H., S.I., and N.M. conceived the study. T.Y., H.W., and H.S. performed the experiments and analyzed

the data. T.Y., S.H., S.I., and N.M. wrote the manuscript. All the authors discussed the results and approved the

final manuscript.

Competing interests The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to N.M.

Scientific Reports |

Vol:.(1234567890)

(2023) 13:16011 |

https://doi.org/10.1038/s41598-023-43127-5

12

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Scientific Reports |

(2023) 13:16011 |

https://doi.org/10.1038/s41598-023-43127-5

13

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る