リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Preparation and characterization of curcumin solid dispersions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Preparation and characterization of curcumin solid dispersions

NGUYEN NGOC SAO MAI 東京理科大学 DOI:info:doi/10.20604/00003615

2021.06.09

概要

Solubility is one of the most important physicochemical properties affecting drug bioavailability. One of the approaches to improve drug solubility is the preparation of solid dispersions (SDs) where the active pharmaceutical ingredients (APIs) are dispersed within (a) hydrophilic carrier(s) such as cyclodextrins, celluloses and their derivatives.

Curcumin (CUR), a diarylheptanoid consisting of two aromatic rings joined by a seven-carbon chain, exhibits numerous pharmacological properties such as anticancer, antioxidant, anti-inflammation, anti-tumor, anti-invasion, and wound healing. The efficient first-pass and intestinal metabolism of CUR might explain its poor systematic availability, and a daily oral dose of 3.6 g of CUR might be sufficient to exert pharmacological activity.

It is suggested that there are three majors approaches to overcome the bioavailability problems of CUR: (1) pharmacokinetics approach done by synthesizing its derivatives;(2) pharmaceutical approach realized by modifying formulation, manufacturing processes or physicochemical properties (e.g. complexation, and nano-formulation); and (3) biological approach by altering route of administration (e.g. intravenous, inhalation, and dermal delivery).

Particularly, converting crystalline drug to amorphous drug is a remarkable technique to achieve faster dissolution rate and higher apparent solubility due to changing physicochemical characteristic of API. There are two types of amorphous solids: pure amorphous drug and amorphous solid dispersion (ASD). Amorphous forms show a tendency towards crystallization to reduce the total energy content and pure amorphous forms convert to crystalline forms more rapidly than ASD’s. Therefore, dispersing APIs within polymers to form an ASD might improve drug dissolution rate and solubility while assuring the thermodynamic stability of drugs.

Enhancing the solubility of curcumin using a solid dispersion system with hydroxypropyl-β-cyclodextrin prepared by grinding, freeze-drying and common solvent evaporation methods Cyclodextrins are cyclic oligosaccharides consisting of six, seven, or eight α-(1,4) linked glucopyranoside units, corresponding to α-, β-, and γ-CD, respectively. The CDs can increase the solubility of drugs that are entrapped within their hydrophobic cavity because of their superior hydrophilic exterior when exposed to water. Moreover, modified CDs using hydrophilic functional groups express a superior possibility of improving drug solubility than conventional CDs.In this study, SDs of CUR and modified β-CD (hydroxypropyl-β-CD, HPβCD) were prepared using the grinding, freeze drying (FD), and common solvent evaporation (CSE) methods, and their physicochemical properties were evaluated with solubility, PXRD, FTIR, DSC, and dissolution studies. The second or higher order complex of CUR-HPβCD indicated the co-existence of inclusion complexes (ICs) and/or non-ICs, known as the SD system. When comparing the soluble drug amount with CUR crystals, the solubility of SDs were increased by up to 299-, 180-, and 489-fold, corresponding to the ground mixtures (GMs), FDs, and CSEs, respectively. The total transformation into the amorphous phase of CUR were observed in GMs and several ratios of CSEs. The drug was well dispersed within HPβCD in GMs and CSEs. The melting temperature of CUR in SDs increased in order of CUR in 1:2 ICs (CUR: HPβCD = 1:2), CUR in 1:1 ICs (CUR: HPβCD = 1:1), and CUR crystals. The dissolution rate of CUR increased with increase in the amount of HPβCD in SDs. The SD system consisting of CUR and HPβCD significantly increased the drug solubility compared to ICs.Preparation and characterization of solid dispersions composed of curcumin, hydroxypropyl cellulose and/or sodium dodecyl sulfate by grinding with vibrational ball milling Hydroxypropyl cellulose (HPC) has been used in SD formation to improve drug solubility. In this study, vibrational ball milling, a dry milling method was used to develop ground and co-ground CUR. It is applicable not only in laboratory research but also in pilot and industrial scale studies. During the grinding process, various parameters can influence the efficiency of grinding, such as the frequency of the vibration, type of grinding jar (volume, material), type of grinding media (quantity, material, and diameter), amount of powder filling, percentage of components, and grinding time.

Here, amorphization of CUR and CUR SDs consisting of CUR, HPC and/or SDS were developed by the vibrational ball milling. The resulting ground samples were characterized using PXRD, FTIR, DSC, and a dissolution study. The 60-min GM containing 90% HPC significantly increased the CUR solubility. Presence of SDS in GMs containing 90% HPC reduced grinding time from 60 min to 30 min in forming a ground SD which significantly increased the drug dissolution rate. This amorphous state was stable for 30 days when stored at 40 °C/ relative humidity 75%.

Effects of polymer molecular weight on curcumin amorphous solid dispersion: at- line monitoring system based on attenuated total reflectance mid-infrared and near- infrared spectroscopy An at-line process analysis is defined as a method characterized by manual sampling followed by discontinuous sample preparation, measurement, and evaluation. Analytical instruments (e.g. near-infrared, mid-infrared, and ultra-violet spectroscopy) and chemometric techniques (e.g. multivariate analysis, principal components analysis (PCA),and partial least-squares) are applied in pharmaceutical science for at-line monitoring process. Chemometrics is used in learning the relationships and structure of the system by analyzing very huge and highly complex datasets.

In this study, a ternary SD system containing CUR, HPC (HPC-SSL, HPC-L, or HPC-M), and SDS were prepared with grinding method, and the physicochemical and mechanochemical properties of this system were characterized. The grinding process, such as the grinding time and HPC Mw could be monitored by analyzing data obtained from MIR and NIR spectra. There were two steps in SD formation: (1) simple dispersion with grinding time under 30 min and (2) random dispersion of mixtures with grinding time from 30 to 120 min. The critical Mw of HPC (700,000 Da) could help select HPC(s) for more effectively forming SD systems.

[Conclusion]
CUR SDs were developed using grinding, FD, and CSE method and physicochemically characterized using PXRD, FTIR, DSC, dissolution study as well as scanning electron spectroscopy, particle size measurement, near- infrared. The carrier(s) where the drug was dispersed could influence the SD forming process due to its (their) chemical structure, molecular weight, proportion, and interactions with other components. The CUR-HPβCD SD consists of ICs and non-ICs and significantly increased the dissolution rate of CUR. Particularly, the grinding method with vibrational ball milling performed a total transformation from crystalline to the amorphous phase. The HPC in ground SDs could significantly increase CUR solubility at 90%. Also, the small amount of SDS might reduce the grinding time up to 30 min to manifest a significant enhancement in drug solubility. The forming of SDs can be at-line monitored using simple techniques such as MIR, NIR associated with chemometric.

参考文献

[1] Rams-Baron, M.; Jachowicz, R.; Boldyreva, E.; Zhou, D.; Jamroz, W.; Paluch, M. Amorphous drug solubility and absorption enhancement. In: Amorphous drugs, Cham: Springer International Publishing Co. 2018, 41–68.

[2] Ngono, F.; Willart, J.F.; Cuello, G.J.; Jimenez-Ruiz, M.; Yelles, C.H.; Affouard,F. Impact of amorphization methods on the physico-chemical properties of amorphous lactulose. Mol. Pharm. 2020, 17, 1–9.

[3] Zeng, Y.; Alzate-Vargas, L.; Li, C.; Graves, R.; Brum, J.; Strachan, A.; Koslowski,M. Mechanically induced amorphization of small molecule organic crystals.Modelling Simul. Mater Sci. Eng. 2019, 27, 1–19.

[4] Shen, W.; Wang, X.; Jia, F.; Tong, Z.; Sun, H.; Wang, X.; Song, F.; Ai, Z.; Zhang, L.; Chai, B. Amorphization enables highly efficient anaerobic thiamphenicol reduction by zero-valent iron. In Appl. Catal. B. 2020, 264, 118550.

[5] Nuno, F.C.; João, F.P.; Ana, I.F. Co-amorphization of olanzapine for solubility enhancement. Ann. Med. 2019, 51, 87.

[6] Zhang, W.; Zhao, Y.; Xu, L.; Song, X.; Yuan, X.; Sun, J.; Zhang, J. Superfine grinding induced amorphization and increased solubility of α-chitin. Carbohydr. Polym. 2020, 237, 116145.

[7] Brough, C.; Williams, R.O. 3rd. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int. J. Pharm. 2013, 453, 157– 166.

[8] DiNunzio, J.C.; Miller, D.A.; Yang, W.; McGinity, J.W.; Williams, R.O. 3rd.Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol. Pharm. 2008, 5, 968–980.

[9] Hancock, B.C.; Parks, M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 2000, 17, 397–404.

[10] Vo, C.L.N.; Park, C.; Lee, B.J. Current Trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2013, 85, 799–813.

[11] Shaikh, A.; Bhide, P.; Nachinolkar, R. Solubility enhancement of celecoxib by solid dispersion technique and incorporation into topical gel. Asian J. Pharm. Clin. Res. 2019, 12, 294–300.

[12] Palanisamy, V.; Sanphui, P.; Prakash, M.; Chernyshev, V. Multicomponent solid forms of the uric acid reabsorption inhibitor lesinurad and cocrystal polymorphs with urea: DFT simulation and solubility study. Acta Crystallogr. Sect. C 2019, 75, 1102–1117.

[13] Das, S.; Mandal, P. Design, formulation, and evaluation of solid dispersion tablets of poorly water-soluble antidiabetic drug using natural polymer. Asian J. Pharm. Clin. Res. 2019, 12, 195–207.

[14] Kapourani, A.; Vardaka, E.; Katopodis, K.; Kachrimanis, K.; Barmpalexis, P. Crystallization tendency of APIs possessing different thermal and glass related properties in amorphous solid dispersions. Int. J. Pharm. 2020, 579, 119149.

[15] Thais, F.R.A.; Cecília, T.B.; Denicezar, B.; Venâncio, A.A.; Mirella, S.; Carolina, S.; Patrícia, S.; Marco, V.C. Preparation, characterization and ex vivo intestinal permeability studies of ibuprofen solid dispersion. J. Disper. Sci. Technol. 2019, 40, 546–554.

[16] Uchiyama, H.; Wada, Y.; Hatanaka, Y.; Hirata, Y.; Taniguchi, M.; Kadota, K.; Tozuka, Y. Solubility and permeability improvement of quercetin by an interactionbetween α-glucosyl stevia nano-aggregates and hydrophilic polymer. J. Pharm. Sci. 2019, 108, 2033–2040.

[17] Trapani, A.; Catalano, A.; Carocci, A.; Carrieri, A.; Mercurio, A.; Rosato, A.; Mandracchia, D.; Tripodo, G.; Schiavone, B.I.P.; Franchini, C.; et al. Effect of methyl-β-cyclodextrin on the antimicrobial activity of a new series of poorly water- soluble benzothiazoles. Carbohydr. Polym. 2019, 207, 720–728.

[18] Curcuma longa in India Materia. In: Nadkarni KM. Indian materia medica, Mumbai: Popular Prakashan Co. 1976, 414–418.

[19] Narayanacharyulu, R.; Krishna, S.C.; Mudit, D. Design and development of sustained release tablets using solid dispersion of beclomethasone dipropionate. Res. Rev. J. Drug Formulation Dev. Prod. 2015, 2, 30–41.

[20] Niederau, C.; Göpfert, E. The effect of chelidonium- and turmeric root extract on upper abdominal pain due to functional disorders of the biliary system. Results from a placebo-controlled double-blind study. Med. Klin. (Munich) 1999, 94, 425–430.

[21] Abouhussein, D.M.N.; El Nabarawi, M.A.E.; Shalaby, S.H.; El-Bary,A.A. Sertraline-cyclodextrin complex orodispersible sublingual tablet: optimization, stability, and pharmacokinetics. J. Pharm. Innov. 2019, 1–14.

[22] Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water-soluble drugs. Drug Discov. Today 2007, 12, 1068–1075.

[23] Abd El-Bary, A.; Kamal, I.H.; Haza’a, B.S.; Al Sharabi, I. Formulation of sustained release bioadhesive minitablets containing solid dispersion of levofloxacin for once daily ocular use. Pharm. Dev. Technol. 2019, 24, 824–838.

[24] Modi, A.; Tayade, P. Enhancement of dissolution profile by solid dispersion(kneading) technique. AAPS PharmSciTech 2006, 7, E87.

[25] Paradkar, A.; Ambike, A.A.; Jadhav, B.K.; Mahadik, K. R. Characterization of curcumin–PVP solid dispersion obtained by spray drying. Int. J. Pharm. 2004 271(1-2), 281–286.

[26] Liu, X.; Lu, M.; Guo, Z.; Huang, L.; Feng, X.; Wu, C. Improving the chemical Stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm. Res. 2012, 29, 806–817.

[27] Wu, J.X.; Yang, M.; Berg, F.van den, Pajander, J.; Rades, T.; Rantanen, J. Influence of solvent evaporation rate and formulation factors on solid dispersion physical stability. Eur. J. Pharm. Sci. 2011, 44(5), 610–620.

[28] Sethia, S.; Squillante, E. Physicochemical Characterization of Solid Dispersions of Carbamazepine Formulated by Supercritical Carbon Dioxide and Conventional Solvent Evaporation Method. J. Pharm. Sci. 2002, 91(9), 1948–1957.

[29] Betageri, G.V.; Makarla K.R. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. Int. J. Pharm. 1995, 126(1-2), 155–160.

[30] Łyszczarz, E.; Hofmanová, J.; Szafraniec-Szczęsny, J.; Jachowicz, R. Orodispersible films containing ball milled aripiprazole-poloxamer®407 solid dispersions. Int. J. Pharm. 2020, 575, 118955.

[31] Tønnesen, H. H.; Karlsen, J.; Mostad, A. Structural studies of curcuminoids. I. The crystal structure of curcumin. Acta Chem. Scand. Ser. B 1982, 36, 475–479.

[32] Mague, J.T.; Alworth, W.T.; Payton, F.L. Curcumin and derivatives. Acta Cryst.2004, C60, 608–610.

[33] Benassi, R.; Ferrari, E.; Lazzari, S.; Spagnolo, F.; Saladini, M. Theoretical study on curcumin: A comparison of calculated spectroscopic properties with NMR, UV-visand IR experimental data. J. Mol. Struct. 2008, 892, 168–176.

[34] Duke, J.A.; Bogenschutz-Godwin, M.J.; duCellier, J.; Duke, P.K. CRC Handbook of Medicinal Spices, 1st ed.; CRC Press LLC: Florida, USA, 2002; pp. 137–144.

[35] Niederau, C.; Gopfert, E. The effect of chelidonium- and turmeric root extract on upper abdominal pain due to functional disorders of the biliary system. Results from a placebo-controlled double-blind study. Med. Klin. (Munich) 1999, 94, 425–430.

[36] Li, C.; Li, L.; Luo, J.; Huang, N. Effect of turmeric volatile oil on the respiratory tract. Zhongguo Zhong Yao Za Zhi 1998, 23, 624–625.

[37] Curcuma longa (turmeric). Monograph. Altern. Med. Rev. 2001, 6, S62–66.

[38] Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998, 64, 353–356.

[39] Bouvier, G.; Hergenhahn, M.; Polack, A.; Bornkamm, G.W.; Bartsch, H. Validation of two test systems for detecting tumor promoters and EBV inducers: comparative responses of several agents in DR-CAT Raji cells and in human granulocytes. Carcinogenesis 1993, 14, 1573–1578.

[40] Saikia, A.P.; Ryakala, V.K.; Sharma, P.; Goswami, P.; Bora, U. Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. J Ethnopharmacol 2006, 106, 149–157.

[41] Sharma, R.A.; Steward, W.P.; Gescher, A.J. Pharmacokinetics and pharmacodynamics of curcumin. Adv. Exp. Med. Biol. 2007, 595, 453–470.

[42] Kulac, M.; Aktas, C.; Tulubas, F.; Uygur, R.; Kanter, M.; Erboga, M.; Ozen, O. A. The effects of topical treatment with curcumin on burn wound healing in rats. J. Mol. Histol. 2012, 44, 83–90.

[43] Cianfruglia, L.; Minnelli, C.; Laudadio, E.; Scirè, A.; Armeni, T. Side effects of curcumin: epigenetic and antiproliferative implications for normal dermal fibroblast and breast cancer cells. Antioxidants 2019, 8, 382.

[44] Liu, X.; Zhang, R.; Shi, H.; Li, X.; Li, Y.; Taha, A.; Xu, C. Protective effect of curcumin against ultraviolet A irradiation‑induced photoaging in human dermal fibroblasts. Mol. Med. Rep. 2018, 17, 7227–7237.

[45] Mohanty, C.; Sahoo, S.K. Curcumin and its topical formulations for wound healing applications. Drug Discov. Today 2017, 22(10), 1582–1592.

[46] Gopinath, D.; Ahmed, M.R.; Gomathi, K; Chitra, K.; Sehgal, P.K.; Jayakumar, R. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials, 2004, 25(10), 1911-1917.

[47] Li, X.; Nan, K.; Li, L.; Zhang, Z.; Chen, H. In vivo evaluation of curcumin nanoformulation loaded methoxy poly(ethylene glycol)-graft-chitosan composite film for wound healing application. Carbohydr. Polym. 2012, 88, 84–90.

[48] Merrell, J.G.; McLaughlin, S.W.; Tie, L.; Laurencin, C.T.; Chen, A.F.; Nair, L.S. Curcumin-loaded poly(epsilon-caprolactone) nanofibres: diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin. Exp. Pharmacol. Physiol. 2009, 36(12), 1149-1156.

[49] El-Refaie, W.M.; Elnaggar, Y.S.; El-Massik, M.A.; Abdallah, O.Y. Novel curcumin-loaded gel-core hyalurosomes with promising burn-wound healing potential: Development, in-vitro appraisal and in-vivo studies. Int. J. Pharm. 2015, 486(1-2), 88-98.

[50] Thomas, L.; Zakir, F.; Mirza, M.A.; Anwer, M.K.; Ahmad, F.J.; Iqbal, Z. Development of Curcumin loaded chitosan polymer based nanoemulsion gel: Invitro, ex vivo evaluation and in vivo wound healing studies. Int. J. Biol. Macromol. 2017, 101, 569-579.

[51] Li, X.; Chen, S.; Zhang, B.; Li, M.; Diao, K.; Zhang, Z.; Li, J.; Xu, Y.; Wang, X.; Chen, H. In situ injectable nano-composite hydrogel composed of curcumin, N,O- carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharm. 2012, 437(1-2), 110-119.

[52] Gong, C.; Wu, Q.; Wang, Y.; Zhang, D.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 2013, 34, 6377–6387.

[53] Manca, M.L.; Castangia, I.; Zaru, M.; Nácher, A.; Valenti, D.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring. Biomaterials 2015, 71, 100-109.

[54] Chereddy, K.K.; Coco, R.; Memvanga, P.B.; Ucakar, B.; des Rieux, A.; Vandermeulen, G.; Préat, V. Combined effect of PLGA and curcumin on wound healing activity. J. Control. Release 2013, 171, 208–215.

[55] Seo, S.-W.; Han, H.-K.; Chun, M.-K.; Choi, H.-K. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. Int. J. Pharm. 2012, 424(1-2), 18–25.

[56] Li, J.; Lee, I.W.; Shin, G.H.; Chen, X.; Park, H.J. Curcumin-Eudragit® E PO solid dispersion: A simple and potent method to solve the problems of curcumin. Eur. J. Pharm. Biopharm. 2015, 94, 322–332.

[57] Hu, L.; Shi, Y.; Li, J.H; Gao, N.; Wang, S. Enhancement of oral bioavailability of curcumin by a novel solid dispersion system. AAPS Pharm. Sci. Tech 2015, 16,1327–1334.

[58] Zhang, Q.; Suntsova, L.; Chistyachenko, Y.S.; Evseenko, V.; Khvostov, M.V.; Polyakov, N.E.; Dushkin, A.V.; Su, W. Preparation, physicochemical and pharmacological study of curcumin solid dispersion with an arabinogalactan complexation agent. Int. J. Biol. Macro. 2019, 128, 158–166.

[59] Dharmalingam, K.; Anandalakshmi R.; Shashank Shekhar. Microwave-induced diffusion method for solid dispersion of curcumin in HPMC matrix using water as hydration carrier, J. Dispers. Sci. Technol. 2020,

[60] Zhang, M.; Zhuang, B.; Du, G.; Han, G.; Jin, Y. Curcumin solid dispersion-loaded in situ hydrogels for local treatment of injured vaginal bacterial infection and improvement of vaginal wound healing. J. Pharm. Pharmacol. 2019, 71(7), 1044- 1054.

[61] Du, L.; Feng, X.; Xiang, X.; Jin, Y. Wound healing effect of an in situ forming hydrogel loading curcumin-phospholipid complex. Curr Drug Deliv. 2016, 13(1), 76-82.

[62] Zhang, W.; Cui, T.; Liu, L.; Wu, Q.; Sun, L.; Li, L.; Wang, N.; Gong, C. Improving anti-tumor activity of curcumin by polymeric micelles in thermosensitive hydrogel system in colorectal peritoneal carcinomatosis model. J. Biomed. Nanotechnol. 2015, 11(7), 1173–1182.

[63] Mai, N.N.S.; Nakai, R.; Kawano, Y.; Hanawa, T. Enhancing the solubility of curcumin using a solid dispersion system with hydroxypropyl-β-cyclodextrin prepared by grinding, freeze-drying, and common solvent evaporation methods. Pharmacy 2020, 8, 203.

[64] Rachmawati, H.; Edityaningrum, C.A.; Mauludin, R. Molecular inclusion Complexof curcumin–β-cyclodextrin nanoparticle to enhance curcumin Skin permeability from hydrophilic matrix gel. AAPS Pharm. Sci. Tech. 2013, 14, 1303–1312.

[65] Maurice, R.E.; Maria, L.A.; Katarina, B.; Howard, D.P.; David, S.K. Cyclodextrin inclusion complexes: Studies of the variation in the size of alicyclic guests. J. Am. Chem. Soc. 1989, 111, 6765–6772.

[66] Swati, R.; Sanjay, K. Solubility enhancement of celecoxib using b-cyclodextrin inclusion complexes, Eur. J. Pharm. Biopharm. 2004, 57, 263-267.

[67] Liu, L.; Zhu, S. Preparation and characterization of inclusion complexes of prazosin hydrochloride with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J. Pharm. Biomed. Anal. 2006, 40, 122–127.

[68] Wen, X.; Tan, F.; Jing, Z.; Liu, Z. Preparation and study the 1:2 inclusion complex of carvedilol with β-cyclodextrin. J. Pharm. Biomed. Anal. 2004, 34, 517–523.

[69] Karathanos, V.T.; Mourtzinos, I.; Yannakopoulou, K.; Andrikopoulos, N.K. Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chem. 2007, 101, 652–658.

[70] Sambasevam, K.P.; Mohamad, S.; Sarih, N.M.; Ismail, N.A. Synthesis and characterization of the inclusion complex of β-cyclodextrin and azomethine. Int. J. Mo. Sci. 2013, 14, 3671–3682.

[71] Menezes, P.P.; Serafini, M.R.; Quintans-Júnior, L.J.; Silva, G.F.; Olivera, J.F.;Carvalho, F.M.S.; Souza, J.C.C.; Matos, J.R.; Alves, P.B.; Matos, I.L.; et al. Inclusion complex of (−)-linalool and β-cyclodextrin. J. Therm. Anal. Calorim. 2014, 115, 2429–2437.

[72] Wen, P.; Zhu, D.H.; Feng, K.; Liu, F.J.; Lou, W.Y.; Li, N.; Zong, M.H.; Wu, H.Fabrication of electrospun polylactic acid nanofilm incorporating cinnamonessential oil/β-cyclodextrin inclusion complex for antimicrobial packaging, Food Chem. 2015, 196, 996–1004.

[73] Li, N.; Wang, N.; Wu, T.; Qiu, C.; Wang, X.; Jiang, S.; Zhang, Z.; Liu, T.; Wei, C.; Wang, T. Preparation of curcumin-hydroxypropyl-β-cyclodextrin inclusion complex by cosolvency-lyophilization procedure to enhance oral bioavailability of the drug. Drug Dev. Ind. Pharm. 2018, 44(12), 1966–1974.

[74] Jantarat, C.; Sirathanarun, P.; Ratanapongsai, S.; Watcharakan, P.; Sunyapong, S.; Wadu, A. Curcumin-hydroxypropyl-β-cyclodextrin inclusion complex preparation methods: effect of common solvent evaporation, freeze drying, and ph shift on solubility and stability of curcumin. Trop. J. Pharm. Res. 2014, 13(8), 1215.

[75] Jun, S. W.; Kim, M.S.; Kim, J.S.; Park, H. J.; Lee, S.; Woo, J.S.; Hwang, S.J.Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 2007, 66(3), 413–421.

[76] Loftsson, T.; Másson, M.; Brewster, M.E. Self-association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci. 2004, 93, 1091–1099.

[77] Loftsson, T.; Magnúsdóttir, A.; Másson, M.; Sigurjónsdóttir, J.F. Self-association and cyclodextrin solubilization of drugs. J. Pharm. Sci. 2002, 91, 2307–2316.

[78] Syed, H.K; Peh, K.K. Comparative curcumin solubility enhancement study of β- cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Lat. Am. J. Pharm. 2013, 32, 52–59.

[79] Martín, L.; León, A.; Olives, A.I.; Castillo, B.; Martín, M.A. Spectrofluorimetric determination of stoichiometry and association constants of the complexes of harmane and harmine with β-cyclodextrin and chemically modified β-cyclodextrins.Talanta 2020, 60, 493–503.

[80] Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohadizadeh, R. Curcumin as a wound healing agent. Life Sci. 2014, 116, 1–7.

[81] 2-Hydroxypropyl-β-cyclodextrin. Available online: https://www.applichem.com/en/shop/product-detail/as/2-hydroxypropyl-beta- cyclodextrin/(accessed on 4 June 2020).

[82] Zhang, Q.; Ren, W.; Dushkin, A.V.; Su, W. Preparation, characterization, in vitro and in vivo studies of olmesartan medoxomil in a ternary solid dispersion with N- methyl-D-glucamine and hydroxypropyl-β-cyclodextrin. J. Drug Deliv. Sci. Technol. 2020, 56, 101546.

[83] Center for drug evaluation and research. Q2 (R1) Validation of analytical procedures: Text and methodology; FDA Beltsville, MD, USA, 1995.

[84] Higuchi T, Connors KA. Phase solubility techniques. Adv. Anal. Chem.Instrum 1965, 4, 117–212.

[85] Dhanoa, M.S.; Lister, S.J; Sanderson, R.; Barnes, R.J. The link between multiplicative scatter correction (MSC) and standard normal variate (SNV)transformations of NIR spectra. J. Near Infrared Spec, 1994, 2, 43–47.

[86] Dissolution test, in: The Pharmacopeia of Japan. 17th ed, Eng ver., Yakuji Nippo Ltd, Japan, 2016, pp. 157–161.

[87] Khan, K.A.; Rhodes, C.T. Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm. Acta Helv. 1972, 47, 594– 700.

[88] Jahed, V.; Zarrabi, A.; Bordbar, A.; Hafezi, M.S. NMR (1H, ROESY) spectroscopic and molecular modelling investigations of supramolecular complex of β-cyclodextrin and curcumin. Food Chem, 2014, 165, 241–246.

[89] Li, N.; Wang, N.; Wu, T.; Qiu, C.; Wang, X.; Jiang, S.; Zhang, Z. Liu, T.; Wei, C.; Wang, T. Preparation of curcumin-hydroxypropyl-β-cyclodextrin inclusion complex by cosolvency-lyophilization procedure to enhance oral bioavailability of the drug, Drug Dev. Ind. Pharm. 2018, 44, 1966-1974.

[90] Kolev, T.M.; Velcheva, E.A.; Stamboliyska, B.A.; Spiteller, M. DFT and experimental studies of the structure and vibrational spectra of curcumin. Int. J. Quantum Chem. 2005, 102, 1069–1079.

[91] Allen, E. The melting point of impure organic compounds. J. Chem. Educ. 1942, 19, 278.

[92] Mai, N.N.S.; Otsuka, Y.; Kawano, Y.; Hanawa, T. Preparation and characterization of solid dispersions composed of curcumin, hydroxypropyl cellulose and/or sodium dodecyl sulfate by grinding with vibrational ball milling. Pharmaceuticals (Basel). 2020, 13(11), 383.

[93] Yamada, T.; Saito, N.; Imai, T.; Otagiri, M. Effect of Grinding with Hydroxypropyl Cellulose on the Dissolution and Particle Size of a Poorly Water-Soluble Drug. Chem. Pharm. Bull. 1999, 47, 1311–1313.

[94] Mochalin, V. N.; Sagar, A.; Gour, S.; Gogotsi, Y. Manufacturing nanosized fenofibrate by salt assisted milling. Pharm. Res. 2009, 26, 1365–1370.

[95] Final report on the safety assessment of sodium lauryl sulfate and ammonium lauryl sulfate. J. Am. Coll. Toxicol. 1983, 2, 127-181.

[96] Li, B., Konecke, S.; Wegiel, L. A.; Taylor, L. S.; Edgar, K. J. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohyd. Polym. 2013, 98, 1108–1116.

[97] Satomi, O.; Takahashi, H.; Kawabata, Y.; Seto, Y.; Hatanaka, J.; Timmermann, B.; Yamada, S. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J. Pharm. Sci. 2010, 99, 1871–1881.

[98] Colombo, I.; Grassi, G.; Grassi, M. Drug mechanochemical activation. J. Pharm.Sci. 2009, 98, 3961–3986.

[99] Moore, W.; Flanner, H.H. Mathematical comparison of curves with an emphasis on in vitro dissolution profiles. Pharm. Technol. 1996, 20, 64–74.

[100] Polli, J.E.; Rekhi, G.S.; Augsburger, L.L.; Shah, V.P. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartarate tablets. J. Pharm. Sci. 1997, 86, 690–700.

[101] Kararli, T.T.; Hurlbut, J.B.; Needham, T.E. Glass–rubber transitions of cellulosic polymers by dynamic mechanical analysis. J. Pharm. Sci. 1990, 79, 845–848.

[102] Mark, J.A.; Patrick, J.W. DoE simplified. CRC Press, 3rd ed. 2015, 106.

[103] Mai, N.N.S; Otsuka, Y.; Goto, S.; Kawano, Y.; Hanawa, T. Effects of polymer molecular weight on curcumin amorphous solid dispersion; at-line monitoring system based on attenuated total reflectance mid-infrared and near-infrared spectroscopy. J. Drug Deliv. Sci. Technol. 2021, 61, 102278,

[104] Wan, S.; Sun, Y.; Qi, X.; Tan, F. Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS Pharm. Sci. Tech. 2011, 13(1), 159–166.

[105] Li, B.; Konecke, S.; Wegiel, L.A.; Taylor, L.S.; Edgar, K.J. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohyd. Polym. 2013, 98(1), 1108–1116.

[106] Paradkar, A.; Ambike, A.A.; Jadhav, B.K.; Mahadik, K.R. Characterization of curcumin–PVP solid dispersion obtained by spray drying. Int. J. Pharm. 2004, 271(1-2), 281–286.

[107] Al-Akayleh, F.; Al-Naji, I.; Adwan, S.; Al-Remawi, M.; Shubair, M. Enhancement of curcumin solubility using a novel solubilizing polymer Soluplus®. J. Pharm. Inno. 2020, 271.

[108] Fan, W., Zhu, W.; Zhang, X.; Di, L. The preparation of curcumin sustained-release solid dispersion by hot melt extrusion. I. Optimization of the formulation. J. Pharm. Sci. 2020, 109(3), 1242–1252.

[109] Qi, S.; Roser, S.; Edler, K.J.; Pigliacelli, C.; Rogerson, M.; Weuts, I.; Frederic, V.D.; Stokbroekx, S. Insights into the role of polymer-surfactant complexes in drug solubilization/stabilization during drug release from solid dispersions. Pharm. Res. 2020, 30(1), 290–302.

[110] Vaka, S.R.K.; Bommana, M.M.; Desai, D.; Djordjevic, J.; Phuapradit, W.; Shah. N. Excipients for amorphous solid dispersion, in: Shah, N.; Sandhu, H.; Choi, D.S.; Chokshi, H. Malick, A.W. (Eds.), Amorphous solid dispersion, Springer-Verlag New York Inc., New York, 2014, pp. 123–164.

[111] Pouton. C.W. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 2006, 29, 278–287.

[112] Tascón-Otero, E.; Torre-Iglesias, P.; García-Rodríguez, J.J.; Peña, M.A.; Álvarez- Álvarez, C. Enhancement ò the dissolution rate of indomethacin by solid dispersions in low-substituted hydroxypropyl cellulose. Indian J. Pharm. Sci. 2019, 81(5), 824– 833.

[113] Otsuka, Y.; Utsunomiya, Y.; Umeda, D.; Yonemochi, E.; Kawano, Y.; Hanawa,T. Effect of polymers and storage relative humidity on amorphous rebamipide and its solid dispersion transformation: multiple spectra chemometrics of powder x-ray diffraction and near-infrared spectroscopy. Pharmaceuticals 2020, 13(7), 147.

[114] Kawano, Y.; Ishii, N.; Shimizu; Y.; Hanawa, T. Development and characterization of suspension containing nanoparticulated rebamipide for a mouth wash for stomatitis. J. Pharm. Sci. Technol., Jpn. 2017, 77(2), 104–115.

[115] Rahman, M.; Ahmad, S.; Tarabokija, J.; Parker, N.; Bilgili, E. Spray-dried amorphous solid dispersions of griseofulvin in HPC/Soluplus/SDS: Elucidating the multifaceted impact of SDS as a minor component. Pharmaceutics 2020, 12(3), 197. [116]Dagge, L.; Harr, K.; Schnedl, G. Classification of process analysis: offline, atline,online, inline. Cem. Int. 2009, 72–81.

[117] Behbahani, P.; Qomi, M.; Ghasemi, N.; Tahvildari, K. Ephedrine analysis in real urine sample via solvent bar microextraction technique coupled with HPLC-UV and chemometrics. Curr. Pharm. Anal. 2019, 15(1), 24–31.

[118] Rodionova, O.Y.; Titova, A.V.; Demkin, N.A.; Balyklova, K.S.; Pomerantsev, A.L. Qualitative and quantitative analysis of counterfeit fluconazole capsules: A non- invasive approach using NIR spectroscopy and chemometrics. Talanta 2019, 195, 662–667.

[119] Soliman, S.S.; Elghobashy, M.R.; Abdalla, O.M. ATR-FTIR coupled with Chemometrics for quantification of vildagliptin and metformin in pharmaceutical combinations having diverged concentration ranges. Vib. Spectrosc. 2020, 116, 102995.

[120] Héberger. K. Chemoinformatics—multivariate mathematical–statistical methodsfor data evaluation, in: Vékey, K.; Telekes, A.; Vertes A. (Eds.), Medical Applications of Mass Spectrometry, Elservier Science Publisher B.V., Netherlands, 2008, pp. 141–169.

[121] Lever, J.; Krzywinski, M.; Altman, N. Points of Significance: Principal component analysis. Nat. Methods 2017, 14(7), 641–642.

[122] Zakaria, J. https://builtin.com/data-science/step-step-explanation-principal-component-analysis, 2020 (accessed 12 November 2020).

[123] Jolliffe, I.T.; Cadima, J. Principal component analysis: a review and recent developments. Philos. T. R. Soc. A. 2016, 374, 20150202.

[124] Zidan, A.S.; Rahman, Z.; Sayeed, V.; Raw, A.; Yu, L.; Khan, M.A. Crystallinity evaluation of tacrolimus solid dispersions by chemometric analysis. Int. J. Pharm. 2012, 423(2) 341–350.

[125] Leimann, V.F.; Gonçalves, O.H.; Sorita, G.D.; Rezende, S.; Bona, E.; Fernandes I.P.M.; Ferreira, I.C.F.R.; Barreiro, M.F. Heat and pH stable curcumin-based hydrophilic colorants obtained by the solid dispersion technology assisted by spray- drying. Chem. Eng. Sci. 2019, 205, 248–258.

[126] Klema, V.; Laub, A. The singular value decomposition: Its computation and some applications. IEEE Trans. Automat. Contr. 1980, 25(2), 164-176.

[127] Faber, N.M.; Rajkó R. How to avoid over-fitting in multivariate calibration – The conventional validation approach and an alternative. Analytica Chimica Acta 2007, 595, 98–106.

[128] Trivedi, M.K.; Nayak, G.; Patil, S.; Tallapragada, R.M.; Mishra, R. Influence of biofield treatment on physicochemical properties of hydroxyethyl cellulose and hydroxypropyl cellulose. J. Mol. Pharm. Org. Process Res. 2015, 3, 126.

[129] Sigma-Aldrich Co. LLC, USA https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html/, 2020 (accessed 10 November2020).

参考文献をもっと見る