リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Stem cell homeostasis regulated by hierarchy and neutral competition」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Stem cell homeostasis regulated by hierarchy and neutral competition

Nakamuta, Asahi Yoshido, Kana Naoki, Honda 京都大学 DOI:10.1038/s42003-022-04218-7

2022

概要

Tissue stem cells maintain themselves through self-renewal while constantly supplying differentiating cells. Two distinct models have been proposed as mechanisms of stem cell homeostasis. According to the classical model, there is hierarchy among stem cells, and master stem cells produce stem cells by asymmetric division; whereas, according to the recent model, stem cells are equipotent and neutrally compete. However, the mechanism remains controversial in several tissues and species. Here, we developed a mathematical model linking the two models, named the hierarchical neutral competition (hNC) model. Our theoretical analysis showed that the combination of the hierarchy and neutral competition exhibited bursts in clonal expansion, which was consistent with experimental data of rhesus macaque hematopoiesis. Furthermore, the scaling law in clone size distribution, considered a unique characteristic of the recent model, was satisfied even in the hNC model. Based on the findings above, we proposed the criterion for distinguishing the three models based on experiments.

この論文で使われている画像

参考文献

1.

2.

Passegué, E., Jamieson, C. H. M., Ailles, L. E. & Weissman, I. L. Normal and

leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition

of stem cell characteristics? Proc. Natl Acad. Sci. 100, 11842–11849 (2003).

Ram Singh, S., Burnicka-Turek, O., Chauhan, C. & Hou, S. X. Spermatogonial

stem cells, infertility and testicular cancer. J. Cell Mol. Med. 15, 468–483

(2011).

COMMUNICATIONS BIOLOGY | (2022)5:1268 | https://doi.org/10.1038/s42003-022-04218-7 | www.nature.com/commsbio

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04218-7

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Slaughter, D. P., Southwick, H. W. & Smejkal, W. ‘Field cancerization’ in oral

stratified squamous epithelium Clinical Implications of Multicentric Origin.

Cancer 6, 963–968 (1953).

Egger, B., Chell, J. M. & Brand, A. H. Insights into neural stem cell biology

from flies. Philos. Trans. R. Soc. B 363, 39–56 (2008).

Fuller, M. T. & Spradling, A. C. Male and female Drosophila germline stem

cells: Two versions of immortality. Science 316, 402–404 (2007).

Christopher, S. P. The epidermal proliferative unit: the possible role of the

central basal cell. Cell Tissue Kinetycs 7, 77–88 (1974).

Huckins, C. The spermatogonial stem cell population in adult rats I. Their

morphology, proliferation and maturation. Anat. Rec. 169, 533–558 (1971).

Oakberg, E. F. Spermatogonial stem-cell renewal in the mouse. Anat. Rec. 169,

515–532 (1971).

Simons, B. D. & Clevers, H. Strategies for homeostatic stem. Cell Self-Renew.

Adult Tissues Cell 145, 851–862 (2011).

Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four

main epithelial cell types in the mouse small intestine V. Unitarian theory of

the origin of the four epithelial cell types. Am. J. Anat. 141, 537–561 (1974).

Marques‐Pereira, J. P. & Leblond, C. P. Mitosis and differentiation in the

stratified squamous epithelium of the rat esophagus. Am. J. Anat. 117, 73–87

(1965).

Winton, D. J., Blount, M. A. & Ponder, B. A. J. A clonal marker induced by

mutation in mouse intestinal epithelium. Nature 333, 463–466 (1988).

Jordan, C. T. & Lemischka, I. R. Clonal and systemic analysis of long-term

hematopoiesis in the mouse. Genes Dev. 4, 220–232 (1990).

Klein, A. M. & Simons, B. D. Universal patterns of stem cell fate in cycling

adult tissues. Development 138, 3103–3111 (2011).

Clayton, E. et al. A single type of progenitor cell maintains normal epidermis.

Nature 446, 185–189 (2007).

Klein, A. M. et al. Mouse germ line stem cells undergo rapid and stochastic

turnover. Cell Stem Cell 7, 214–224 (2010).

Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral

competition between symmetrically dividing Lgr5 stem. Cells Cell 143,

134–144 (2010).

Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. Intestinal stem

cell replacement follows a pattern of neutral drift. Science 330, 822–825

(2010).

Kanatsu-Shinohara, M., Naoki, H. & Shinohara, T. Nonrandom germline

transmission of mouse spermatogonial stem cells. Dev. Cell 38, 248–261

(2016).

Kim, S. et al. Dynamics of HSPC repopulation in nonhuman primates

revealed by a decade-long clonal-tracking study. Cell Stem Cell 14, 473–485

(2014).

Nowak, M. Evolutionary dynamics: exploring the equations of life. in

Quarterly Rev. Biol. 82 (2007).

Bramson, M. & Griffeath, D. Asymptotics for interacting particle systems

onZd. Z. Wahrscheinlichkeitstheorie und Verwandte-. Geb. 53, 183–196 (1980).

Sawyer, S. A limit theorem for patch sizes in a selectively-neutral migration

model. J. Appl. Probab. 16, 482–495 (1979).

Spellerberg, I. F. & Fedor, P. J. A tribute to Claude Shannon (1916–2001) and

a plea for more rigorous use of species richness, species diversity and the

‘Shannon-Wiener’ Index. Glob. Ecol. Biogeogr. 12, 177–179 (2003).

Cheng, H., Zheng, Z. & Cheng, T. New paradigms on hematopoietic stem cell

differentiation. Protein Cell 11, 34–44 (2020).

Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from

stem cells in vivo. Nature 518, 542–546 (2015).

Xu, S., Kim, S., Chen, I. S. Y. & Chou, T. Modeling large fluctuations of

thousands of clones during hematopoiesis: The role of stem cell self-renewal

and bursty progenitor dynamics in rhesus macaque. PLoS Comput Biol.

https://doi.org/10.1371/journal.pcbi.1006489 (2018).

Jurecic, R. Hematopoietic stem cell heterogeneity. Adv. Exp. Med. Biol. 1169,

195–211 (2019).

Copley, M. R., Beer, P. A. & Eaves, C. J. Hematopoietic stem cell heterogeneity

takes center stage. Cell Stem Cell 10, 690–697 (2012).

ARTICLE

30. Parigini, C. & Greulich, P. Universality of clonal dynamics poses fundamental

limits to identify stem cell self-renewal strategies. eLife 9, 1–30 (2020).

31. Greulich, P. et al. Universal principles of lineage architecture and stem cell

identity in renewing tissues. Development 148, 194399 (2021).

32. Noble, A. E., Hastings, A. & Fagan, W. F. Multivariate moran process with

Lotka-Volterra phenomenology. Phys. Rev. Lett. 107, 288101 (2011).

Acknowledgements

We are grateful to Dr. Takashi Shinohara and Dr. Mito Kanatsu-Shinohara for their

valuable discussions and the editor and reviewers for the informative suggestions related

to experimental data, which significantly improved our manuscript. We also thank for

the research opportunity provided by the Mathematics-based Creation of Science

(MACS) Program in Faculty of Science, Kyoto University (A.N. and H.N.). This study

was supported in part by the Moonshot R&D–MILLENNIA Program [grant number

JPMJMS2024-9] by JST, Grant-in-Aid for Transformative Research Areas (B) [grant

number 21H05170], and Cooperative Study Program of Exploratory Research Center on

Life and Living Systems (ExCELLS) [program number 19-102 to H.N.]. It was also

supported by JSPS KAKENHI [grant number JP21J23680 to K.Y.] and Grant-in-Aid for

Scientific Research (B) [grant number 21H03541 to H.N.], both from the Japan Society

for the Promotion of Science (JSPS).

Author contributions

H.N. conceived the project. A.N., K.Y., and H.N. developed the method, A.N. implemented the model simulation and mathematical analysis, and A.N., K.Y., and H.N. wrote

the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s42003-022-04218-7.

Correspondence and requests for materials should be addressed to Honda Naoki.

Peer review information Communications Biology thanks Ingmar Glauche and the

other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Primary Handling Editor: Manuel Breuer. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2022

COMMUNICATIONS BIOLOGY | (2022)5:1268 | https://doi.org/10.1038/s42003-022-04218-7 | www.nature.com/commsbio

11

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る