リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Adaptive discrimination between harmful and harmless antigens in the immune system by predictive coding」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Adaptive discrimination between harmful and harmless antigens in the immune system by predictive coding

Yoshido, Kana Honda, Naoki 京都大学 DOI:10.1016/j.isci.2022.105754

2023.01.20

概要

The immune system discriminates between harmful and harmless antigens based on past experiences; however, the underlying mechanism is largely unknown. From the viewpoint of machine learning, the learning system predicts the observation and updates the prediction based on prediction error, a process known as “predictive coding.” Here, we modeled the population dynamics of T cells by adopting the concept of predictive coding; conventional and regulatory T cells predict the antigen concentration and excessive immune response, respectively. Their prediction error signals, possibly via cytokines, induce their differentiation to memory T cells. Through numerical simulations, we found that the immune system identifies antigen risks depending on the concentration and input rapidness of the antigen. Further, our model reproduced history-dependent discrimination, as in allergy onset and subsequent therapy. Taken together, this study provided a novel framework to improve our understanding of how the immune system adaptively learns the risks of diverse antigens.

この論文で使われている画像

参考文献

1. Akdis, M., and Akdis, C.A. (2014). Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J. Allergy Clin. Immunol. 133, 621–631. https://doi.org/10.1016/j.jaci.2013.12.1088.

2. Buckley, C.D., and McGettrick, H.M. (2018). Leukocyte trafficking between stromal compartments: lessons from rheumatoid arthritis. Nat. Rev. Rheumatol. 14, 476–487. https://doi.org/10.1038/s41584-018-0042-4.

3. Evavold, B.D., and Allen, P.M. (1991). Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science 252, 1308–1310. https://doi. org/10.1126/science.1833816.

4. Dustin, M.L. (2008). T-cell activation through immunological synapses and kinapses. Immunol. Rev. 221, 77–89. https://doi.org/10. 1111/j.1600-065X.2008.00589.x.

5. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N., and Kupfer, A. (1998). Three- dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86. https://doi.org/10.1038/25764.

6. Kappler, J.W., Roehm, N., and Marrack, P. (1987). T cell tolerance by clonal elimination in the thymus. Cell 49, 273–280. https://doi. org/10.1016/0092-8674(87)90568-X.

7. Kisielow, P., Blu¨ thmann, H., Staerz, U.D., Steinmetz, M., and Von Boehmer, H. (1988). Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746. https:// doi.org/10.1038/333742a0.

8. Anderson, M.S., Venanzi, E.S., Klein, L., Chen, Z., Berzins, S.P., Turley, S.J., Von Boehmer, H., Bronson, R., Dierich, A., Benoist, C., et al. (2002). Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401. https://doi.org/10. 1126/science.1075958.

9. Luckheeram, R.V., Zhou, R., Verma, A.D., and Xia, B. (2012). CD4 +T cells: differentiation and functions. Clin. Dev. Immunol. 2012, 925135. https://doi.org/10.1155/2012/ 925135.

10. Crotty, S. (2011). Follicular helper CD4 T cells (T FH). Annu. Rev. Immunol. 29, 621–663. https://doi.org/10.1146/annurev-immunol- 031210-101400.

11. Zhu, J., and Paul, W.E. (2008). CD4 T cells: fates, functions, and faults. Blood 112, 1557– 1569. https://doi.org/10.1182/blood-2008- 05-078154.

12. Vignali, D.A.A., Collison, L.W., and Workman, C.J. (2008). How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532. https://doi.org/10. 1038/nri2343.

13. Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono, M. (2008). Regulatory T cells and immune tolerance. Cell 133, 775–787. https:// doi.org/10.1016/j.cell.2008.05.009.

14. Chowdhury, D., and Lieberman, J. (2008). Death by a thousand cuts: granzyme pathways of programmed cell death. Annu. Rev. Immunol. 26, 389–420. https://doi.org/ 10.1146/annurev.immunol.26.021607.090404.

15. Brincks, E.L., Roberts, A.D., Cookenham, T., Sell, S., Kohlmeier, J.E., Blackman, M.A., and Woodland, D.L. (2013). Antigen-specific memory regulatory CD4 + Foxp3 + T cells control memory responses to influenza virus infection. J. Immunol. 190, 3438–3446. https://doi.org/10.4049/jimmunol.1203140.

16. Gasper, D.J., Tejera, M.M., and Suresh, M. (2014). CD4 T-cell memory generation and maintenance. Crit. Rev. Immunol. 34, 121–146. https://doi.org/10.1615/ CritRevImmunol.2014010373.

17. Kaech, S.M., Wherry, E.J., and Ahmed, R. (2002). Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262. https://doi.org/10.1038/nri778.

18. Harrington, L.E., Janowski, K.M., Oliver, J.R., Zajac, A.J., and Weaver, C.T. (2008). Memory CD4 T cells emerge from effector T-cell progenitors. Nature 452, 356–360. https:// doi.org/10.1038/nature06672.

19. Garcia, S., DiSanto, J., and Stockinger, B. (1999). Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 11, 163–171. https://doi.org/10.1016/S1074-7613(00) 80091-6.

20. Canonica, G.W., Cox, L., Pawankar, R., Baena- Cagnani, C.E., Blaiss, M., Bonini, S., Bousquet, J., Caldero´ n, M., Compalati, E., Durham, S.R., et al. (2014). Sublingual immunotherapy: world Allergy Organization position paper 2013 update. World Allergy Organ. J. 7, 6. https://doi.org/10.1186/1939- 4551-7-6.

21. Noon, L. (1911). Prophylactic inoculation against hay fever. Lancet 177, 1572–1573. https://doi.org/10.1016/S0140-6736(00) 78276-6.

22. Pfaar, O., Bachert, C., Bufe, A., Buhl, R., Ebner, C., Eng, P., Friedrichs, F., Fuchs, T., Hamelmann, E., Hartwig-Bade, D., et al. (2014). Guideline on allergen-specific immunotherapy in IgE-mediated allergic diseases. Allergo J. Int. 23, 282–319. https:// doi.org/10.1007/s40629-014-0032-2.

23. Bo¨ hm, L., Maxeiner, J., Meyer-Martin, H., Reuter, S., Finotto, S., Klein, M., Schild, H., Schmitt, E., Bopp, T., and Taube, C. (2015). IL- 10 and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma. J. Immunol. 194, 887–897. https://doi.org/10.4049/jimmunol. 1401612.

24. Shamji, M.H., and Durham, S.R. (2011). Mechanisms of immunotherapy to aeroallergens. Clin. Exp. Allergy 41, 1235– 1246. https://doi.org/10.1111/j.1365-2222. 2011.03804.x.

25. Radulovic, S., Jacobson, M.R., Durham, S.R., and Nouri-Aria, K.T. (2008). Grass pollen immunotherapy induces Foxp3-expressing CD4+CD25+ cells in the nasal mucosa. J. Allergy Clin. Immunol. 121, 1467–1472.e1. https://doi.org/10.1016/j.jaci.2008.03.013.

26. Rao, R.P., and Ballard, D.H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87. https://doi.org/10.1038/4580.

27. Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138. https://doi.org/10.1038/nrn2787.

28. Friston, K., and Kiebel, S. (2009). Predictive coding under the free-energy principle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1211–1221. https://doi.org/10.1098/rstb. 2008.0300.

29. Friston, K.J., Daunizeau, J., Kilner, J., and Kiebel, S.J. (2010). Action and behavior: a free-energy formulation. Biol. Cybern. 102, 227–260. https://doi.org/10.1007/s00422- 010-0364-z.

30. Tadokoro, C.E., Shakhar, G., Shen, S., Ding, Y., Lino, A.C., Maraver, A., Lafaille, J.J., and Dustin, M.L. (2006). Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med. 203, 505–511. https://doi.org/10.1084/jem. 20050783.

31. Busse, D., De La Rosa, M., Hobiger, K., Thurley, K., Flossdorf, M., Scheffold, A., and Ho¨ fer, T. (2010). Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl. Acad. Sci. USA 107, 3058–3063. https://doi.org/10. 1073/pnas.0812851107.

32. Feinerman, O., Jentsch, G., Tkach, K.E., Coward, J.W., Hathorn, M.M., Sneddon, M.W., Emonet, T., Smith, K.A., and Altan- Bonnet, G. (2010). Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol. 6, 437. https://doi. org/10.1038/msb.2010.90.

33. Turner, M.D., Nedjai, B., Hurst, T., and Pennington, D.J. (2014). Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 1843, 2563–2582. https://doi.org/10.1016/j.bbamcr.2014. 05.014.

34. Sturm, G.J., Varga, E.M., Roberts, G., Mosbech, H., Bilo` , M.B., Akdis, C.A., Antolı´n- Ame´ rigo, D., Cichocka-Jarosz, E., Gawlik, R., Jakob, T., et al. (2018). EAACI guidelines on allergen immunotherapy: hymenoptera venom allergy. Allergy 73, 744–764. https:// doi.org/10.1111/all.13262.

35. Cox, L., Nelson, H., Lockey, R., Calabria, C., Chacko, T., Finegold, I., Nelson, M., Weber, R., Bernstein, D.I., Blessing-Moore, J., et al. (2011). Allergen immunotherapy: a practice parameter third update. J. Allergy Clin. Immunol. 127. S1–55. https://doi.org/10. 1016/j.jaci.2010.09.034.

36. Barni, S., Liccioli, G., Sarti, L., Giovannini, M., Novembre, E., and Mori, F. (2020). Immunoglobulin E (IgE)-mediated food allergy in children: epidemiology, pathogenesis, diagnosis, prevention, and management. Medicina 56, 111. https://doi. org/10.3390/medicina56030111.

37. Aleksic, M., Dushek, O., Zhang, H., Shenderov, E., Chen, J.L., Cerundolo, V., Coombs, D., and van der Merwe, P.A. (2010). Dependence of T Cell antigen recognition on T cell receptor-peptide MHC confinement time. Immunity 32, 163–174. https://doi.org/ 10.1016/j.immuni.2009.11.013.

38. Cˇemerski, S., Das, J., Locasale, J., Arnold, P., Giurisato, E., Markiewicz, M.A., Fremont, D., Allen, P.M., Chakraborty, A.K., and Shaw, A.S. (2007). The stimulatory potency of T cell antigens is influenced by the formation of the immunological synapse. Immunity 26, 345–355. https://doi.org/10.1016/j.immuni. 2007.01.013.

39. Evavold, B.D., Sloan-Lancaster, J., and Allen, P.M. (1993). Tickling the TCR: selective T-cell functions stimulated by altered peptide ligands. Immunol. Today 14, 602–609. https:// doi.org/10.1016/0167-5699(93)90200-5.

40. Turner, P.J., Jerschow, E., Umasunthar, T., Lin, R., Campbell, D.E., and Boyle, R.J. (2017). Fatal anaphylaxis: mortality rate and risk factors. J. Allergy Clin. Immunol. Pract. 5, 1169–1178. https://doi.org/10.1016/j.jaip. 2017.06.031.

41. Ratajczak, W., Nied´zwiedzka-Rystwej, P., Tokarz-Deptuła, B., and Deptuła, W. (2018). Immunological memory cells. Cent. Eur. J. Immunol. 43, 194–203. https://doi.org/10. 5114/ceji.2018.77390.

42. Rosenblum, M.D., Way, S.S., and Abbas, A.K. (2016). Regulatory T cell memory. Nat. Rev. Immunol. 16, 90–101. https://doi.org/10. 1038/nri.2015.1.

43. Bianchi, D.W., Zickwolf, G.K., Weil, G.J., Sylvester, S., and Demaria, M.A. (1996). Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc. Natl. Acad. Sci. USA 93, 705–708. https://doi.org/10.1073/pnas.93.2.705.

44. Nelson, J.L. (2012). The otherness of self: microchimerism in health and disease. Trends Immunol. 33, 421–427. https://doi.org/10. 1016/j.it.2012.03.002.

45. Sanchez, A.M., Zhu, J., Huang, X., and Yang, Y. (2012). The development and function of memory regulatory T cells after acute viral infections. J. Immunol. 189, 2805–2814. https://doi.org/10.4049/jimmunol.1200645.

46. O’Garra, A., Gabryˇsova´ , L., and Spits, H. (2011). Quantitative events determine the differentiation and function of helper T cells. Nat. Immunol. 12, 288–294. https://doi.org/ 10.1038/ni.2003.

47. Montaudouin, C., Anson, M., Hao, Y., Duncker, S.V., Fernandez, T., Gaudin, E., Ehrenstein, M., Kerr, W.G., Colle, J.-H., Bruhns, P., et al. (2013). Quorum sensing contributes to activated IgM-secreting B cell homeostasis. J. Immunol. 190, 106–114. https://doi.org/10.4049/jimmunol.1200907.

48. Shalek, A.K., Satija, R., Shuga, J., Trombetta, J.J., Gennert, D., Lu, D., Chen, P., Gertner, R.S., Gaublomme, J.T., Yosef, N., et al. (2014). Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369. https://doi.org/10.1038/ nature13437.

49. Burroughs, N.J., Oliveira, B.M.P.M., Pinto, A.A., and Sequeira, H.J.T. (2008). Sensibility of the quorum growth thresholds controlling local immune responses. Math. Comput. Model. 47, 714–725. https://doi.org/10.1016/ j.mcm.2007.06.007.

50. Schrom, E.C., Levin, S.A., and Graham, A.L. (2020). Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells. PLoS Comput. Biol. 16, e1008051. https://doi.org/10.1371/journal. pcbi.1008051.

51. Fuqua, W.C., Winans, S.C., and Greenberg, E.P. (1994). Quorum sensing in bacteria: the LuxR-LuxI family of cell density- responsive transcriptional regulators. J. Bacteriol. 176, 269–275. https://doi.org/10.1128/jb.176.2. 269-275.1994.

52. Waters, C.M., and Bassler, B.L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346. https://doi.org/10.1146/annurev. cellbio.21.012704.131001.

53. Antonioli, L., Blandizzi, C., Pacher, P., Guilliams, M., and Hasko´ , G. (2018). Quorum sensing in the immune system. Nat. Rev. Immunol. 18, 537–538. https://doi.org/10. 1038/s41577-018-0040-4.

54. Perie´ , L., Aru, J., Kourilsky, P., and Slotine, J.J. (2013). Does a quorum sensing mechanism direct the behavior of immune cells? C. R. Biol. 336, 13–16. https://doi.org/10.1016/j. crvi.2013.01.006.

55. Al-Yassin, G.A., and Bretscher, P.A. (2018). Does T cell activation require a quorum of lymphocytes? J. Immunol. 201, 2855–2861. https://doi.org/10.4049/jimmunol.1800805.

56. Polonsky, M., Rimer, J., Kern-Perets, A., Zaretsky, I., Miller, S., Bornstein, C., David, E., Kopelman, N.M., Stelzer, G., Porat, Z., et al. (2018). Induction of CD4 T cell memory by local cellular collectivity. Science 360, eaaj1853. https://doi.org/10.1126/science. aaj1853.

57. Matzinger, P. (1994). Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045. https://doi.org/10.1146/annurev. iy.12.040194.005015.

58. Pradeu, T., and Cooper, E.L. (2012). The danger theory: 20 years later. Front. Immunol. 3, 287. https://doi.org/10.3389/fimmu.2012. 00287.

59. Matzinger, P. (2002). The danger model: a renewed sense of self. Science 296, 301–305. https://doi.org/10.1126/science.1071059.

60. Janeway, C.A. (1989). Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54 Pt 1, 1–13. https://doi.org/10. 1101/sqb.1989.054.01.003.

61. Hara, A., and Iwasa, Y. (2017). When is allergen immunotherapy effective? J. Theor. Biol. 425, 23–42. https://doi.org/10.1016/j. jtbi.2017.04.030.

62. Gross, F., Metzner, G., and Behn, U. (2011). Mathematical modeling of allergy and specific immunotherapy: Th1-Th2-Treg interactions. J. Theor. Biol. 269, 70–78. https://doi.org/10.1016/j.jtbi.2010.10.013.

63. Sontag, E.D. (2017). A dynamic model of immune responses to antigen presentation predicts different regions of tumor or pathogen elimination. Cell Syst. 4, 231– 241.e11. https://doi.org/10.1016/j.cels.2016. 12.003.

64. Pradeu, T., Jaeger, S., and Vivier, E. (2013). The speed of change: towards a discontinuity theory of immunity? Nat. Rev. Immunol. 13, 764–769. https://doi.org/10.1038/nri3521.

65. Domı´nguez-Hu¨ ttinger, E., Christodoulides, P., Miyauchi, K., Irvine, A.D., Okada- Hatakeyama, M., Kubo, M., and Tanaka, R.J. (2017). Mathematical modeling of atopic dermatitis reveals ‘‘double-switch’’ mechanisms underlying 4 common disease phenotypes. J. Allergy Clin. Immunol. 139, 1861–1872.e7. https://doi.org/10.1016/j.jaci. 2016.10.026.

66. Christodoulides, P., Hirata, Y., Domı´nguez- Hu¨ ttinger, E., Danby, S.G., Cork, M.J., Williams, H.C., Aihara, K., and Tanaka, R.J. (2017). Computational design of treatment strategies for proactive therapy on atopic dermatitis using optimal control theory. Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160285. https://doi.org/10.1098/rsta. 2016.0285.

67. Yazdanbakhsh, M., Kremsner, P.G., and Van Ree, R. (2002). Immunology: allergy, parasites, and the hygiene hypothesis. Science 296, 490–494. https://doi.org/10. 1126/science.296.5567.490.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る