リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Low interface state densities at Al2O3/GaN interfaces formed on vicinal polar and non-polar surfaces」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Low interface state densities at Al2O3/GaN interfaces formed on vicinal polar and non-polar surfaces

Ando, Yuto Nagamatsu, Kentaro Deki, Manato Taoka, Noriyuki Tanaka, Atsushi Nitta, Shugo Honda, Yoshio Nakamura, Tohru Amano, Hiroshi 名古屋大学

2020.09

概要

Ni/Al2O3/GaN structures with vicinal GaN surfaces from the c- or m-plane were formed. Then, electrical interface properties of the structures were systematically investigated. It was found that interface state density (Dit) at the Al2O3/GaN interface for the c-plane is higher than that for the m-plane, and post-metallization annealing is quite effective to reduce Dit for both c- and m-planes. As a result, the low Dit value of ∼ 3 × 1010 eV−1 cm−2 was demonstrated for both planes.

参考文献

21

[1]

T. P. Chow, Microelectronic Engineering 83, 112 (2006).

22

[2]

Y. Irokawa, Y. Nakano, M. Ishiko, T. Kachi, J. Kim, F. Ren, B. P. Gila, A. H.

23

Onstine, C. R. Abemathy, S. J. Pearton, C.-C. Pan, G.-T. Chen, and J.-I. Chyi, Appl.

24

Phys. Lett. 84, 2919 (2004).

10

[3]

K. Matocha, T. P. Chow, and R. J. Gutmann, IEEE Trans. Electron Devices 52, 6

(2005).

[4]

W. Huang, T. Khan, and T. P. Chow, IEEE Electron Device Lett. 27, 796 (2006).

[5]

H. Otake, S. Egami, H. Ohta, Y. Nanishi and H. Takasu, Jpn. J. Appl. Phys. 46,

L599(2007).

[6]

Asbeck, Phys. Status Solidi C 10, 820 (2013).

[7]

10

13

14

15

16

17

18

19

S. Takashima, K. Ueno, H. Matsuyama, T. Inamoto, M. Edo, T. Takahashi, M.

Shimizu, and K. Nakagawa, Appl. Phys. Express 10, 121004 (2017).

[8]

11

12

S. Gu, H. Katayose, K. Nomoto, T. Nakamura, A. Ohoka, K. Lee, W. Lu, and P. M.

R. Tanaka, S. Takashima, K. Ueno, H. Matsuyama, M. Edo, and K. Nakagawa,

Appl. Phys. Express 12, 054001 (2019).

[9]

H. Ogawa, T. Okazaki, H. Kasai, K. Hara, Y. Notani, Y. Yamamoto, and T.

Nakamura, Phys. Status Solidi C 11, 302 (2014).

[10] H. Ogawa, H. Kasai, K. Kaneda, T. Tsuchiya, T. Mishima, and T. Nakamura, Phys.

Status Solidi C 11, 918 (2014).

[11] H. Otake, K. Chikamatsu, A. Yamaguchi, T. Fujishima, and H. Ohta, Appl. Phys.

Express 1, 011105 (2008).

[12] M. Kodama, M. Sugimoto, E. Hayashi, N. Soejima, O. Ishiguro, M. Kanechika, K.

Itoh, H. Ueda, T. Uesugi, and T. Kachi, Appl. Phys. Express 1, 021104 (2008).

20

[13] T. Oka, T. Ina, Y. Ueno, and J. Nishii, Appl. Phys. Express 8, 054101 (2015).

21

[14] Y. Zhang, M. Sun, D. Piedra, J. Hu, Z. Liu, Y. Lin, X. Gao, K. Shepard, and T.

22

23

24

Palacios,

2017 IEEE International Electron Devices Meeting, 9.2.1 (2017).

[15] M. Yoshino, Y. Ando, M. Deki, T. Toyabe, K. Kuriyama, Y. Honda, T. Nishimura,

H. Amano, T. Kachi, and T. Nakamura, Materials 12, 689 (2019).

11

[16] R. Tanaka, S. Takashima, K. Ueno, H. Matsuyama, and M. Edo, Jpn. J. Appl. Phys.

59, SGGD02 (2020).

[17] J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.: Condens. Matter 15, 5649

(2003).

[18] F. Yu, S. Yao, F. Romer, B. Witzigmann, T. Schimpke, M. Strassburg, A. Bakin, H.

W. Schumacher, E. Peiner, and H. S. Wasisto, Nanotechnology 28, 095206 (2017).

[19] K. Matocha, V. Tilak, and G. Dunne, Appl. Phys. Lett. 90, 123511 (2007).

[20] Y. Jia, J. S. Wallace, E. Echeverria, J. A. Gardella, and U. Singisetti, Phys. Stat.

Solidi B 254, 1600681 (2017).

10

[21] Y. Jia, K. Zeng, and U. Singisetti, J. Appl. Phys. 122, 154104 (2017).

11

[22] A. Tanaka, Y. Ando, K. Nagamatsu, M. Deki, H. Cheong, B. Ousmane, M.

12

Kushimoto, S. Nitta, Y. Honda, and H. Amano, Phys. Status Solidi A 215, 1700645

13

(2018).

14

15

[23] H. Yamada, H. Chonan, T. Takahashi, and M. Shimizu, Appl. Phys. Express 10,

041001 (2017).

16

[24] D. E. Eastman, Phy. Rev. B, 2, 1 (1970).

17

[25] T. Hashizume, S. Kaneki, T. Oyobiki, Y. Ando, S. Sasaki, and K. Nishiguchi, Appl.

18

Phys. Express 11, 124102 (2018).

19

[26] H. Jiang, X. Lu, C. Liu, Q. Li, and K. M. Lau, Phys. Status Solidi A 213, 868 (2016).

20

[27] E. H. Nicollian and J. R. Brews, MOS Physics and Technology (Wiley, New York,

21

1982).

22

[28] T. Marron, S. Takashima, Z. Li, and T. P. Chow, Phys. Status Solidi C 9, 907 (2012).

23

[29] S. Gu, E. A. Chagarov, J. Min, S. Madisetti, S. Novak, S. Oktyabrsky, A. J. Kerr, T.

24

Kaufman-Osborn, A. C. Kummel, and P. M. Asbeck, Appl. Surface Sci. 317, 1022

12

(2014).

[30] Y. Ando, K. Nagamatsu, M. Deki, N. Taoka, A. Tanaka, S. Nitta, Y. Honda, T.

Nakamura, and H. Amano, to be submitted.

[31] R. Therrien, G. Lucovsky, and R. Davis, Appl. Surface Sci. 166, 513 (2000).

[32] M. Choi, J. L. Lyons, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 102,

142902 (2013).

13

Figure captions

Fig. 1 : (Color online) Structure of MIS capacitors fabricated in this study.

Fig. 2 : (Color online) C-V curves of the capacitors without PMA for (a) c- and (b) m-

planes. The dotted line indicates an ideal C-V curve. The insets show the

magnified C-V curves in the depletion bias conditions.

Fig. 3 : (Color online) C-V curves of the capacitors with PMA for (a) c- and (b) m-planes.

The insets show the magnified C-V curves in the depletion bias conditions.

Fig. 4 : (Color online) G-V curves for the capacitors with PMA for the c- and m-planes.

Fig. 5 : (Color online) Energy distributions of Dit for the capacitors.

10

14

Figures

10

11

12

13

14

15

Ni/Au

ALD-Al2O3 50nm

n-GaN : Si

4×1016 cm−3

5µm

c- or m-plane

n+-GaN sub.

16

17

Ti/Al/Ti/Au

18

Fig. 2

19

Y. Ando et al.

20

21

22

23

24

15

200

200

13

14

120

150

CFB

100

100

50

-3.5

-3

-2.5

1MHz

100kHz

10kHz

1kHz

50

Ideal

15

16

Capacitance [nF/cm 2]

12

Capacitance [nF/cm 2]

10

11

(b) m-plane

(a) c-plane

-7.5

-5

-2.5

120

150

100

CFB

100

50

-2

-1.5

1MHz

100kHz

10kHz

1kHz

50

Ideal

-7.5

2.5

-5

-2.5

Voltage [V]

Voltage [V]

17

Fig. 3

18

Y. Ando et al.

19

20

21

22

23

16

2.5

200

13

14

150

100

FB

100

50

-0.5

0.5

50

Ideal

15

1MHz

100kHz

10kHz

1kHz

120

150

100

CFB

100

50

0.5

1.5

50

Ideal

1MHz

100kHz

10kHz

1kHz

-5

16

(b) m-plane PMA

120

Capacitance [nF/cm 2]

12

Capacitance [nF/cm 2]

10

11

200

(a) c-plane PMA

-2.5

2.5

-5

Voltage [V]

-2.5

Voltage [V]

17

18

Fig. 4

19

Y. Ando et al.

20

21

22

23

24

17

2.5

12

10kHz

10

10

12

13

14

15

GP [nS]

11

c-plane

PMA

m-plane

PMA

16

17

18

-5

-2.5

Voltage [V]

19

20

Fig. 5

21

Y. Ando et al.

22

23

24

18

2.5

12

10

c-plane

m-plane

10

11

12

13

14

Dit [eV-1cm-2]

before PMA

11

10

15

PMA

16

10

17

18

10

-0.5

-0.4

-0.3

E-EC [eV]

19

20

Fig. 6

21

Y. Ando et al.

22

23

24

19

-0.2

-0.1

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る