リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Maternal GABAergic and GnRH/corazonin pathway modulates egg diapause phenotype of the silkworm Bombyx mori」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Maternal GABAergic and GnRH/corazonin pathway modulates egg diapause phenotype of the silkworm Bombyx mori

Tsuchiya, Ryoma Kaneshima, Aino Kobayashi, Masakazu Yamazaki, Maki Takasu, Yoko Sezutsu, Hideki Tanaka, Yoshiaki Mizoguchi, Akira Shiomi, Kunihiro 信州大学 DOI:10.1073/pnas.2020028118

2023.01.19

概要

Diapause represents a major developmental switch in insects and is a seasonal adaptation that evolved as a specific subtype of dormancy in most insect species to ensure survival under unfavorable environmental conditions and synchronize populations. However, the hierarchical relationship of the molecular mechanisms involved in the perception of environmental signals to integration in morphological, physiological, behavioral, and reproductive responses remains unclear. In the bivoltine strain of the silkworm Bombyx mori, embryonic diapause is induced transgenerationally as a maternal effect. Progeny diapause is determined by the environmental temperature during embryonic development of the mother. Here, we show that the hierarchical pathway consists of a gamma-aminobutyric acid (GABA)ergic and corazonin signaling system modulating progeny diapause induction via diapause hormone release, which may be finely tuned by the temperature-dependent expression of plasma membrane GABA transporter. Furthermore, this signaling pathway possesses similar features to the gonadotropin-releasing hormone (GnRH) signaling system for seasonal reproductive plasticity in vertebrates.

この論文で使われている画像

参考文献

1. V. Kostál, Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).

2. D. A. Hahn, D. L. Denlinger, Energetics of insect diapause. Annu. Rev. Entomol. 56, 103–121 (2011).

3. D. L. Denlinger, G. D. Yocum, J. P. Rinehart, “Hormonal control of diapause” in Insect Endocrinology, L. I. Gilbert, Ed. (Academic Press, San Diego, 2012), pp. 430–463.

4. L. M. Garcia-Segura, Hormones and Brain Plasticity (Oxford University Press, 2009).

5. O. Yamashita, K. Hasegawa, “Embryonic diapause” in Comprehensive Insect Physi- ology, Biochemistry and Pharmacology, G. A. Kerkut, L. I. Gilbert, Eds. (Pergamon Press, Oxford, 1985), vol. 1, pp. 407–434.

6. K. Shiomi et al., Disruption of diapause induction by TALEN-based gene mutagenesis in relation to a unique neuropeptide signaling pathway in Bombyx. Sci. Rep. 5, 15566 (2015).

7. M. Nakagaki, R. Takei, E. Nagashima, T. Yaginuma, Cell cycles in embryos of the silkworm, Bombyx mori: G2-arrest at diapause stage. Rouxs Arch. Dev. Biol. 200, 223–229 (1991).

8. O. Yamashita, Diapause hormone of the silkworm, Bombyx mori: Structure, gene expression and function. J. Insect Physiol. 42, 669–679 (1996).

9. T. Homma et al., G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem. Biophys. Res. Commun. 344, 386–393 (2006).

10. A. Sato et al., Embryonic thermosensitive TRPA1 determines transgenerational dia- pause phenotype of the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. U.S.A. 111, E1249–E1255 (2014).

11. S. Fukuda, Function of the pupal brain and suboesophageal ganglion in the pro- duction of non-diapause and diapause eggs in the silkworm. Annot. Zool. Jpn. 25, 149–155 (1952).

12. K. Matsutani, H. Sonobe, Control of diapause-factor secretion from the sub- oesophageal ganglion in the silkworm, Bombyx mori: The roles of the protocerebrum and tritocerebrum. J. Insect Physiol. 33, 279–285 (1987).

13. A. Hagino, N. Kitagawa, K. Imai, O. Yamashita, K. Shiomi, Immunoreactive intensity of FXPRL amide neuropeptides in response to environmental conditions in the silkworm, Bombyx mori. Cell Tissue Res. 342, 459–469 (2010).

14. T. Ichikawa, S. Aoki, I. Shimizu, Neuroendocrine control of diapause hormone secre- tion in the silkworm, Bombyx mori. J. Insect Physiol. 43, 1101–1109 (1997).

15. A. Sedelnikova, B. E. Erkkila, H. Harris, S. O. Zakharkin, D. S. Weiss, Stoichiometry of a pore mutation that abolishes picrotoxin-mediated antagonism of the GABAA re- ceptor. J. Physiol. 577, 569–577 (2006).

16. S. Masiulis et al., GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature 565, 454–459 (2019).

17. I. Shimizu, T. Matsui, K. Hasegawa, Possible involvement of GABAergic neurons in regulation of diapause hormone secretion in the silkworm, Bombyx mori. Zool. Sci. 6, 809–812 (1989).

18. S. D. Buckingham, P. C. Biggin, B. M. Sattelle, L. A. Brown, D. B. Sattelle, Insect GABA receptors: Splicing, editing, and targeting by antiparasitics and insecticides. Mol. Pharmacol. 68, 942–951 (2005).

19. A. K. Jones, Genomics, cys-loop ligand-gated ion channels and new targets for the control of insect pests and vectors. Curr. Opin. Insect Sci. 30, 1–7 (2018).

20. J. A. Veenstra, Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett. 250, 231–234 (1989).

21. Y. Zhao, C. A. Bretz, S. A. Hawksworth, J. Hirsh, E. C. Johnson, Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS One 5, e9141 (2010).

22. O. I. Kubrak, O. V. Lushchak, M. Zandawala, D. R. Nässel, Systemic corazonin signalling modulates stress responses and metabolism in Drosophila. Open Biol. 6, 160152 (2016).

23. K. D. McClure, U. Heberlein, A small group of neurosecretory cells expressing the transcriptional regulator apontic and the neuropeptide corazonin mediate ethanol sedation in Drosophila. J. Neurosci. 33, 4044–4054 (2013).

24. K. Sha et al., Regulation of ethanol-related behavior and ethanol metabolism by the Corazonin neurons and Corazonin receptor in Drosophila melanogaster. PLoS One 9, e87062 (2014).

25. K. Varga et al., Loss of Atg16 delays the alcohol-induced sedation response via reg- ulation of Corazonin neuropeptide production in Drosophila. Sci. Rep. 6, 34641 (2016).

26. A. O. Bergland, H. S. Chae, Y. J. Kim, M. Tatar, Fine-scale mapping of natural variation in fly fecundity identifies neuronal domain of expression and function of an aqua- porin. PLoS Genet. 8, e1002631 (2012).

27. S. Tanaka, K. I. Harano, Y. Nishide, R. Sugahara, The mechanism controlling pheno- typic plasticity of body color in the desert locust: Some recent progress. Curr. Opin. Insect Sci. 17, 10–15 (2016).

28. Y. J. Kim et al., Corazonin receptor signaling in ecdysis initiation. Proc. Natl. Acad. Sci. U.S.A. 101, 6704–6709 (2004).

29. E. Imura et al., The corazonin-PTTH neuronal axis controls systemic body growth by regulating basal ecdysteroid biosynthesis in Drosophila melanogaster. Curr. Biol. 30, 2156–2165.e5 (2020).

30. J. Gospocic et al., The neuropeptide corazonin controls social behavior and caste identity in ants. Cell 170, 748–759.e12 (2017).

31. F. Hauser, C. J. Grimmelikhuijzen, Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia. Gen. Comp. Endocrinol. 209, 35–49 (2014).

32. M. Zandawala, S. Tian, M. R. Elphick, The evolution and nomenclature of GnRH-type and corazonin-type neuropeptide signaling systems. Gen. Comp. Endocrinol. 264, 64–77 (2018).

33. O. Yamashita, T. Yaginuma, “Silkworm eggs at low temperatures: Implication for sericulture” in Insects at Low Temperature, J. R. E. Lee, D. L. Denlinger, Eds. (Chapman and Hall, New York, 1991), pp. 424–445.

34. L. Roller, Y. Tanaka, S. Tanaka, Corazonin and corazonin-like substances in the central nervous system of the Pterygote and Apterygote insects. Cell Tissue Res. 312, 393–406 (2003).

35. J. Yang et al., Specific activation of the G protein-coupled receptor BNGR-A21 by the neuropeptide corazonin from the silkworm, Bombyx mori, dually couples to the G(q) and G(s) signaling cascades. J. Biol. Chem. 288, 11662–11675 (2013).

36. L. L. Yu, Y. J. Cui, G. J. Lang, M. Y. Zhang, C. X. Zhang, The ionotropic γ-aminobutyric acid receptor gene family of the silkworm, Bombyx mori. Genome 53, 688–697 (2010).

37. Q. Wei, S. F. Wu, C. F. Gao, Molecular characterization and expression pattern of three GABA receptor-like subunits in the small brown planthopper Laodelphax striatellus (Hemiptera: Delphacidae). Pestic. Biochem. Physiol. 136, 34–40 (2017).

38. Z. Q. Jia et al., Identification of the ionotropic GABA receptor-like subunits from the striped stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Pestic. Bio- chem. Physiol. 155, 36–44 (2019).

39. K. Schuske, A. A. Beg, E. M. Jorgensen, The GABA nervous system in C. elegans. Trends Neurosci. 27, 407–414 (2004).

40. T. Ilg, M. Berger, S. Noack, A. Rohwer, M. Gaßel, Glutamate decarboxylase of the parasitic arthropods Ctenocephalides felis and Rhipicephalus microplus: Gene iden- tification, cloning, expression, assay development, identification of inhibitors by high throughput screening and comparison with the orthologs from Drosophila mela- nogaster and mouse. Insect Biochem. Mol. Biol. 43, 162–177 (2013).

41. N. Kapan, O. V. Lushchak, J. Luo, D. R. Nässel, Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell. Mol. Life Sci. 69, 4051–4066 (2012).

42. Y. J. Guh, T. K. Tamai, T. Yoshimura, The underlying mechanisms of vertebrate sea- sonal reproduction. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 95, 343–357 (2019).

43. C. J. Scott, J. L. Rose, A. J. Gunn, B. M. McGrath, Kisspeptin and the regulation of the reproductive axis in domestic animals. J. Endocrinol. 240, R1–R16 (2018).

44. B. De Velasco, J. Shen, S. Go, V. Hartenstein, Embryonic development of the Dro- sophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. Dev. Biol. 274, 280–294 (2004).

45. K. Shiomi et al., The Pitx homeobox gene in Bombyx mori: Regulation of DH-PBAN neuropeptide hormone gene expression. Mol. Cell. Neurosci. 34, 209–218 (2007).

46. J. J. Tremblay, C. Lanctôt, J. Drouin, The pan-pituitary activator of transcription, Ptx1 (pituitary homeobox 1), acts in synergy with SF-1 and Pit1 and is an upstream regu- lator of the Lim-homeodomain gene Lim3/Lhx3. Mol. Endocrinol. 12, 428–441 (1998).

47. Y. Tanaka, Y. Hua, L. Roller, S. Tanaka, Corazonin reduces the spinning rate in the silkworm, Bombyx mori. J. Insect Physiol. 48, 707–714 (2002).

48. Y. Tanaka, J. Ishibashi, S. Tanaka, Comparison of structure-activity relations of cor- azonin using two different bioassay systems. Peptides 24, 837–844 (2003).

49. Y. Shi et al., Identification and functional characterization of two orphan G-protein- coupled receptors for adipokinetic hormones from silkworm Bombyx mori. J. Biol. Chem. 286, 42390–42402 (2011).

50. M. Watanabe, A. Fukuda, J. Nabekura, The role of GABA in the regulation of GnRH neurons. Front. Neurosci. 8, 387 (2014).

51. L. Chen, K. A. Durkin, J. E. Casida, Structural model for gamma-aminobutyric acid receptor noncompetitive antagonist binding: Widely diverse structures fit the same site. Proc. Natl. Acad. Sci. U.S.A. 103, 5185–5190 (2006).

52. M. Xu, D. F. Covey, M. H. Akabas, Interaction of picrotoxin with GABAA receptor channel-lining residues probed in cysteine mutants. Biophys. J. 69, 1858–1867 (1995).

53. D. S. Wang, J. M. Mangin, G. Moonen, J. M. Rigo, P. Legendre, Mechanisms for pic- rotoxin block of alpha2 homomeric glycine receptors. J. Biol. Chem. 281, 3841–3855 (2006).

54. C. Henry et al., Heterogeneous expression of GABA receptor-like subunits LCCH3 and GRD reveals functional diversity of GABA receptors in the honeybee Apis mellifera. Br. J. Pharmacol. 177, 3924–3940 (2020).

55. G. Gisselmann, J. Plonka, H. Pusch, H. Hatt, Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA-gated cation channels. Br. J. Pharmacol. 142, 409–413 (2004).

56. A. Scimemi, Structure, function, and plasticity of GABA transporters. Front. Cell. Neurosci. 8, 161 (2014).

57. D. Mbungu, L. S. Ross, S. S. Gill, Cloning, functional expression, and pharmacology of a GABA transporter from Manduca sexta. Arch. Biochem. Biophys. 318, 489–497 (1995).

58. X. Gao, H. McLean, S. Caveney, C. Donly, Molecular cloning and functional charac- terization of a GABA transporter from the CNS of the cabbage looper, Trichoplusia ni. Insect Biochem. Mol. Biol. 29, 609–623 (1999).

59. P. D. Gluckman, M. A. Hanson, H. G. Spencer, Predictive adaptive responses and hu- man evolution. Trends Ecol. Evol. 20, 527–533 (2005).

60. T. A. Mousseau, C. W. Fox, Maternal Effects as Adaptations (Oxford University Press, 1998).

61. Y. Takasu, T. Tamura, S. Sajwan, I. Kobayashi, M. Zurovec, The use of TALENs for nonhomologous end joining mutagenesis in silkworm and fruitfly. Methods 69, 46–57 (2014).

62. N. Kitagawa et al., Establishment of a sandwich ELISA system to detect diapause hormone, and developmental profile of hormone levels in egg and subesophageal ganglion of the silkworm, Bombyx mori. Zool. Sci. 22, 213–221 (2005).

63. K. Shiomi et al., Myocyte enhancer factor 2 (MEF2) is a key modulator of the ex- pression of the prothoracicotropic hormone gene in the silkworm, Bombyx mori. FEBS J. 272, 3853–3862 (2005).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る