リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「黒毛和種の脂肪酸組成に対する原因遺伝子の同定に向けたゲノムワイド関連解析および全ゲノムリシーケンスを用いた候補多型の網羅的検証」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

黒毛和種の脂肪酸組成に対する原因遺伝子の同定に向けたゲノムワイド関連解析および全ゲノムリシーケンスを用いた候補多型の網羅的検証

Kawaguchi, Fuki 川口, 芙岐 カワグチ, フキ 神戸大学

2020.03.25

概要

黒毛和種は肉質に優れた肉用品種であり、脂肪交雑の向上を主とした育種改良が進められてきた。近年では脂肪交雑に加え、脂肪の質の指標となる“脂肪酸組成”の改良も重要視されるようになった。筋肉内脂肪は種々の脂肪酸から構成されるが、オレイン酸(C18:1)をはじめとする不飽和脂肪酸はくちどけの良さや風味に好影響を有し、さらにはヒトの悪玉コレステロールを減少させることから健康にも良いとされている。これらの点から不飽和脂肪酸の含有率の増加が望まれており、本研究では脂肪酸組成に対する責任遺伝子および責任変異を明らかにすることで、その改良に貢献することを目的とした。

脂肪酸組成に対する責任遺伝子探索は、すでにいくつもの先行研究で進められてきており、これまでに報告されてきた有力候補遺伝子としては、SCDおよびFASN遺伝子が挙げられる。これら2つの遺伝子はそれぞれ、脂肪酸の不飽和化と合成に関わる遺伝子であり、複数のウシ集団において脂肪酸組成と有意に関連する多型も同定されている。しかしながら脂肪酸組成は多くの遺伝子により制御されていることが知られており、いくつもの賁任遺伝子が未だ不明なまま残されていると考えられている。そこで本研究では脂肪酸組成の遺伝的要因の全容解明に向け、より網羅的な候補多型の検出および候補としての可能性の検討を試みた。またその過程において近年開発された方法も利用し、その有効性についても検討することを目的とした。

【第一章】
脂質の代謝に関わる遺伝子はその機能から脂肪酸組成に影響を有している可能性が髙い。第一章では、エネルギー代謝における機能からレプチン(LEP)遺伝子に着目し、選抜マ ーカーの開発および責任変異の探索を試みた。

まず、LEP遺伝子の翻訳領域全長において多型探索を実施したところ8SNPsが同定され、それらのうち3SNPsはアミノ酸置換(Y7F, R25C, A80V)であった。続いて、黒毛和種2 集団におけるそれら3SNPsの脂肪酸組成および枝肉形質に対する効果を調査したところ、Y7Fは枝肉重量、R25CはC14:1およびC18:0とそれぞれ有意な関連を示し、A80VもC18:1をはじめとするいくつかの脂肪酸組成との有意な関連が認められた。

3つのアミノ酸置換のうち、R25CおよびA80Vの2っが脂肪酸組成との有意な関連を示し、選抜マーカーとしての利用が期待された。特にA80Vは、脂肪酸組成に対する優良アリルの頻度が低く、改良の余地が大きい有用な選抜マーカーであると考えられる。またR25C およびA80Vは他品種におけるウシ経済形質との有意な関連がいくつも報告されており、レプチンの機能に影響を有する責任変異である可能性も示された。黒毛和種においてLEP遺伝子多型について調査した研究はこれまでになく、本研究の結果は、脂肪酸組成の遗伝的要因の解明に貢献することが期待された。

【第二章】
第一章では、遺伝子の機能から選出したLEP遺伝子内に脂肪酸組成に影響する可能性のある2つのアミノ酸置換が同定された。しかし、脂肪酸組成は多数の遺伝子により制御される形質であると考えれており、遺伝的要因の探索として、より網羅的な探索が必要であると考えられた。そこでまずは、ゲノムワイド関連解析(GWAS)によるオレイン酸含有率 (C18:1)に対する候補領域の探索を試みた。

本研究のGWASにおいてはプーリング法を用いている。供試集団は兵庫県黒毛和種1836頭とし、それらからオレイン酸含有率にっいて上位100頭および下位100頭を選出し、それぞれDNAブールを作成した。BovineSNP50 BeadChipによって各DNAプールにおけるアリル頻度を推定し、上位と下位のアリル頻度が有意に異なるSNPをC18:1に対する有意SNPとして検出した。

結果として、ウシ9 番染色体( Β Ί Ά 9 ) および14 番染色体( Β Ί Ά 14 ) における3SNPsおよび1SNPがC18:1との有意な関連を示し、QTLとして同定された。黒毛和種においてこれらの領域に脂肪酸組成に対するQTLが同定されたことはなく、それぞれの領域において新規の責任遺伝子および責任多型が同定される可能性が高いと考えられた。

【第三章】
近年、次世代シーケンス技術の発達とウシゲノムの全塩基配列の決定が進められたことにより、種々の解析において全ゲノムリシーケンス解析が利用されるようになった。第三章では、品章において同定されたQTLのうちΒΤA9のQTLに対して、全ゲノムリシーケンス解析を利用した責任候補多型の網羅的探索を試みた。

全ゲノムリシーケンス解析には、GWASのDNAプール作成に用いたC18:1に関する上位および下位の個体より、それぞれ4個体ずつ用いた。またそれらの選出基準として、GWASにおいて最も低いp値を示したSNP (Hapmap43702-BTA-84086)が上位個体では優良のアリルのホモ型、下位個体では反対のホモ型を示す個体を選出した。 Hapmap43702-BTA-84086より上流および下流に5Mbpを候補領域とし、解析に用いた8個体にリファレンスを加えた9個体間で多型探索を実施したところ、39,658多型が検出された。そのうち10,045多型が遺伝子内に位置していた。さらにHapmap43702-BTA-84086との連鎖不平衡( LD) 程度を予測する指標として上位4 個体と下位4 個体間にけるアリルの異なる数を算出し、4アリル以上異なっていた1,993多型を候補として絞り込んだ。続いてそれらの候補多型が位置していた23遺伝子について、NCBIデータベースを基に機能の調査を実施した。結果として、脂肪酸の代謝に関わることが予想された、CYB5R4、MED23、 VNN1の3遺伝子が候補遺伝子として有力であると考えられ、それぞれの遺伝子における候補多型として、CYB5R4 c.*349G>T, MED23 c.3700G>A、VNN1 c.197C>T が選出された。

さらにこれらの候補多型の責任変異としての可能性をより詳細に検討するため、Hapmap 43702-BTA-84086も加えた4SNPsの兵庫県黒毛和種899頭におけるC18:1との関連を調査した。結果として4SNPsはいずれもC18:1と有意な関連を示し、さらに候補多型はいずれもHapmap43702 -BTA-84086と中程度から高い連鎖不平衡が観察された。これらの結果から、本章において検証を進めた3つの候補多型は、QTLに対する責任変異である可能挂があると考えられた。特に、CYB5R4 c.*349G>TはHapmap43702・ΒΤΑ・84086よりも低いρ値を示し、遺伝分散を説明する割合も最も高い値が算出されたため、現段階における最有力候補であると考えられた。これら3SNPs以外の多型についても検証を進め、さらにより有力な多型については、多型ごとに酵素の活性比較検証や発現量の比較検証などを通してより詳細に多型の効果を調査することで責任遺伝子および貴任変異の同定が期待される。

本研究では、脂肪酸組成を制御する遺伝的要因の解明を目的とし、C18:1に対するGWASと全ゲノムリシーケンス解析を利用した網羅的候補多型の探索を実施した。兵庫県黒毛和種集団におけるBTA9の候補領域に位置する全多型を網羅的に検出し比較することで、有力な候補多型を導き出すことができた。本研究において効果の検証を実施した多型だけでなく、全多型について賁任としての可能性を検討することができたため、今後、更なる検証を重ねることで責任遺伝子および責任変異の同定が期待される。

また、家畜において全ゲノムリシーケンス解析を用いた責任変異の探索が実施された例はこれまでにはほとんどなく、本研究がその代表例として、今後の研究に有益な情報をもたらすと考えられる。特に全ゲノムリシーケンス解析の利用は、時間や労力の短縮、有力候補の検出力の点で効率的な方法であることが示され、今後益々の利用が期待された。

この論文で使われている画像

参考文献

Abe T, Saburi J, Hasebe H, Nakagawa T, Misumi S, Nade T, Nakajima H, Shoji N, Kobayashi M, Kobayashi E. 2009. Novel mutations of the FASN gene and their effect on fatty acid composition in Japanese Black beef. Biochemical Genetics 47, 397-411.

Asai M, Ramachandrappa S, Joachim M, Shen Y, Zhang R, Nuthalapati N, Ramanathan V, Strochlic DE, Ferket P, Linhart K, Ho C, Novoselova TV, Garg S, Ridderstråle M, Marcus C, Hirschhorn JN, Keogh JM, O’Rahilly S, Chan LF, Clark AJ, Farooqi IS, Majzoub JA. 2013. Loss of function of the Melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science 341, 275-278.

Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JJ, Mizel DE, Anzao M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB. 1999. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biology 1, 260-266.

Babusyte A, Kotthoff MK, Fiedler J, Krautwurst D. 2013. Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2. Journal of Leukocyte Biology 93, 387-394.

Bartel DP. 2004. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116, 281-297.

Bastie CC, Nahle Z, McLoughlin T, Esser K, Zhang W, Unterman T, Abumrad NA. 2005. FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms. The Journal of Biological Chemistry 280, 14222-14229.

Baughman BM, Pattenden SG, Norris JL, James LI, Frye SV. 2016. The L3MBTL3 methyl-lysine reader domain functions as a dimer. ACS Chemical Biology 11, 72-728.

Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, Winkelman-Sim DC, Schmutz SM. 2002. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genetics Selection Evolution 34, 105-116.

Buchanan FC, Van Kessel AG, Waldner C, Christensen DA, Laaveld B, Schmutz SM. 2003. Hot Topic: An Association Between a Leptin Single Nucleotide Polymorphism and Milk and Protein Yield. Journal of Dairy Science 86, 3164–3166.

Catalanotto C, Cogoni C, Zardo G. 2016. MicroRNA in control of gene expression: an overview of nuclear functions. International Journal of Molecular Sciences 17, 1712.

Chanadalia M, Davila H, Pan W, Szuszkiewicz M, Tuvdendorj D, Livingston EH, Abate N. 2012. Adipose Tissue Dysfunction in Humans: A Potential Role for the Transmembrane Protein ENPP1. The Journal of Clinical Endocrinology & Metabolism 97, 4663-4672.

Chang GHK, Lay AJ, Ting KK, Zhao Y, Coleman PR, Powter EE, Formaz-Preston A, Jolly CJ, Bower NI, Hogan BM, Rinkwitz S, Becher TS, Vadas MA, Gamble JR. 2014. ARHGAP18: an endogenous inhibitor of angiogenesis, limiting tip formation and stabilizing junctions. Small GTPases 5, 1-15.

Chebel RC, Susca F, Santos JEP. 2008. Leptin genotype is associated with lactation performance and health of Holstein cows. Journal of Dairy Science 91, 2893–2900.

Chen D, Zhang R, Shen W, Fu H, Liu S, Sun K, Sun X. 2013. RPS12-specific shRNA inhibits the proliferation, migration of BGC823 gastric cancer cells with S100A4 as a downstream effector. International Journal of Oncology 42, 1763-1769.

Chen G, Koyama K, Yuan X, Lee Y, Zhou YT, O’Doherty R, Newgard CB, Unger RH. 1996. Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy. Proceedings of the National Academy of Sciences of the United States of America 93, 14795-14799.

Choi S, Cornall R, Lesourne R, Love PE. 2017. THEMIS: two models, different thresholds. Trends in immunology 38, 622-632.

Chu Y, Rosso LG, Huang P, Wang Z, Xu Y, Yao X, Bao M, Yan J, Song H, Wang G. 2014. Liver Med23 ablation improves glucose and lipid metabolism through modulating FOXO1 activity. Cell Research 24, 1250-1265.

Clempson AM, Pollott GE, Brickell JS, Bourne NE, Munce N, Wathes DC. 2011. Evidence that leptin genotype is associated with fertility, growth, and milk production in Holstein cows. Journal of Dairy Science 94, 3618-3628.

Corva PM, Fernández Macedo GV, Soria LA, Papaleo Mazzucco J, Motter M, Villarreal EL, Schor A, Mezzadra CA, Melucci LM, Miquel MC. 2009. Effect of leptin gene polymorphisms on growth, slaughter and meat quality traits of grazing Brangus steers. Genetics and Molecular Research 8, 105-116.

Czech B, Fraszczak M, Mielczarek M, Szyda J. 2018. Identification and annotation of breedspecific single nucleotide polymorphisms in Bos taurus genomes. PLoS ONE 13, e0198419.

Dai Y, Duan H, Duan C, Zhu H, Zhou R, Pei H, Shen L. 2017. TCF21 functions as a tumor suppressor in colorectal cancer through inactivation of PI3K/AKT signaling. OncoTargets and Therapy 10, 1603-1611.

Deng B, Parthasarathy S, Wang WF, Gibney BR, Battaile KP, Lovell S, Benson DR, Zhu H. 2010. Study of the individual cytochrome b5 and cytochrome b5 reductase domains of Ncb5or reveals a unique heme pocket and a possible role of the CS domain. The Journal of Biological Chemistry 285, 30181-30191.

Devlin B, Roeder K. 1999. Genomic control for association studies. Biometrics 55, 997-1004.

De Vriese C, Delporte C. 2008. Ghrelin: A new peptide regulating growth hormone release and food intake. The International Journal of Biochemistry & Cell Biology 40, 1420-1424.

Fantuzzi G, Faggioni R. 2000. Leptin in the regulation of immunity, inflammation, and hematopoiesis. Journal of Leukocyte Biology 68, 437-446.

Folch J, Lees M, Stanley GHS. 1957. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry 226, 497-509.

Fontanesi L, Scotti E, Russo V. 2010. Analysis of SNPs in the KIT gene of cattle with different coat colour patterns and perspectives to use these markers for breed traceability and authentication of beef and dairy products. Italian Journal of Animal Science 9, e42.

Furuta Y, Tsai SH, Kinoshita M, Fujimoto K, Okumura R, Umemoto E, Kurashima Y, Kiyono H, Kayama H, Takeda K. 2017. E-NPP3 controls plasmacytoid dendritic cell numbers in the small intestine. PLoS ONE 12, e0172509.

Gainetdinov RR, Hoener MC, Berry MD. 2018. Trace amines and their receptors. Pharmacological Reviews 70, 549-620.

Giblin L, Butler ST, Kearney BM, Waters SM, Callanan MJ, Berry DP. 2010. Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires. BMC Genetics 11, 73.

Gil-Iturbe E, Arbones-Mainar JM, Moreno-Aliaga M, Lostao MP. GLUT12 and adipose tissue: Expression, regulation and its relation with obesity in mice. Acta Physiologica 226, e13329.

Glantz M, Månsson HL, Stålhammar H, Paulsson M. 2012. Effect of polymorphisms in the leptin, leptin receptor and acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) genes and genetic polymorphism of milk proteins on bovine milk composition. Journal of Dairy Research 79, 110–118.

Gotoh T, Nishimura T, Kuchida K, Mannen H. 2018. The Japanese Wagyu beef industry: current situation and future prospects — A review. Asian-Australasian Journal of Animal Sciences 31, 933-950.

Gotoh T, Takahashi H, Nishimura T, Kuchida K, Mannen H. 2014. Meat produced by Japanese Black cattle and Wagyu. Animal Frontiers 4, 46-54.

Gutiérrez-Gil B, Wiener P, Richardson RI, Wood JD, Williams JL. 2010. Identification of QTL with effects on fatty acid composition of meat in a Charolais × Holstein cross population. Meat Science 85, 721-729.

Hayakawa K, Sakamoto T, Ishii A, Yamaji K, Uemoto Y, Sasago N, Kobayashi E, Kobayashi N, Matsuhashi T, Maruyama S, Matsumoto H, Oyama K, Mannen H, Sasazaki S. 2015. The g.841G>C SNP of FASN gene is associated with fatty acid composition in beef cattle. Animal Science Journal 86, 737-746.

He Y, Luo J, Chen Y, Zhou X, Yu S, Jin L, Xial X, Jia S, Liu Q. 2018. ARHGAP18 is a novel gene under positive natural selection that influences HbF levels in β‑thalassaemia. Molecular Genetics and Genomics 293, 207-216.

Henry BA, Clarke IJ. 2008. Adipose Tissue Hormones and the Regulation of Food Intake. Journal of Neuroendocrinology 20, 842-849.

Hoashi S, Ashida N, Ohsaki H, Utsugi T, Sasazaki S, Taniguchi M, Oyama K, Mukai F. 2007. Genotype of bovine sterol regulatory element binding protein-1 (SREBP-1) is associated with fatty acid composition in Japanese Black cattle. Mammalian Genome 18, 880-886.

Holloway PW, Katz JT. 1972. A requirement for cytochrome b5 in microsomal stearyl coenzyme A desaturation. Biochemistry 11, 3689-3696.

Ingvertsen KL, Boisclair YR. 2001. Leptin and the regulation of food intake, energy homeostasis and immunity with special focus on periparturient ruminants. Domestic Animal Endocrinology 21, 215-250.

Inoue K, Kobayashi M, Kato K. 2011. Genetic parameters for fatty acid composition and feed efficiency traits in Japanese Black Cattle. Animal 5, 987-994.

Inoue K, Hirabara S, Nade T, Fujita K, Yamauchi K. 2002. Nihon Chikusan Gakkaiho 73, 381-387.

Inoue K, Shoji N, Honda T, Oyama K. 2017. Genetic relationships between meat quality traits and fatty acid composition in Japanese black cattle. Animal Science Journal 88, 11-18.

Ishii A, Yamaji K, Uemoto Y, Sasago N, Kobayashi E, Kobayashi N, Matsuhashi T, Maruyama S, Matsumoto H, Sasazaki S, Mannen H. 2013. Genome-wide association study for fatty acid composition in Japanese Black cattle. Animal Science Journal 84, 675-682.

Iyer R, Jenkinson CP, Vockey JG, Kern RM, Grody WW, Cederbaum S. 1998. The human arginases and arginase deficiency. Journal of Inherited Metabolic Disease Suppl 1, 86-100.

James LI, Korboukh VK, Krichevsky L, Baughman BM, Herold JM, Norris JL, Jin J, Kireev DB, Janzen WP, Arrowsmith CH, Frye S. 2013. Small-molecule ligands of methyl-lysine binding proteins: optimization of selectivity for L3MBTL3. Journal of Medicinal Chemistry 56, 7358-7371.

Jarjanazi H, Savas S, Pabalan N, Dennis JW, Ozcelik H. 2007. Biological implications of SNPs in signal peptide domains of human proteins. Proteins 70, 394-403.

Jiang J, Gao Y, Hou Y, Li W, Zhang S, Zhang Q, Sun D. 2016. Whole-genome resequencing of Holstein bulls for indel discovery and identification of genes associated with milk composition traits in dairy cattle. PLoS ONE 11, e0168946.

Jones BW, Brunet S, Gilbert ML, Nichols CB, Su T, Westenbroek RE, Scott JD, Catterall WA, McKnight GS. 2012. Cardiomyocytes from AKAP7 knockout mice respond normally to adrenergic stimulation. Proceedings of the National Academy of Sciences of the United States of America 93, 17099-17104.

Jones BW, Deem J, Younts TJ, Weisenhaus M, Sanford C, Slack M, Chin J, Nachmanson D, McKennon A, Castillo PE, McKnight GS. 2016. Targeted deletion of AKAP7 in dentate granule cells impairs spatial discrimination. eLife 5, e20695.

Kavian N, Marut W, Servettaz A, Nicco C, Chéreau C, Lemaréchal H, Guilpain P, Chimini G, Galland F, Weill B, Naquet P, batteux F. 2015. Pantethine prevents murine systemic sclerosis through the inhibition of microparticle shedding. Arthritis & Rheumatology 67, 1881-1890.

Kato K, Nishimasu H, Mihara E, Ishitani R, Takagi J, Aoki J, Nureki O. 2012. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of Enpp1. Structural Biology and Crystallization Communications F68, 778-782.

Kelly GS. 1997. Pantethine: a review of its biochemistry and therapeutic applications. Alternative Medicine Review 2: 365-376.

Kim YC, Ntambi JM. 1999. Regulation of stearoyl-CoA desaturase genes: Role in cellular metabolism and preadipocyte differentiation. Biochemical and Biophysical Research Communications 266, 1-4.

Kim HJ, Shama A, Lee SH, Lee DH, Lim DJ, Cho YM, Yang BS, Lee SH. 2016. Genetic association of PLAG1, SCD, CYP7B1 and FASN SNPs and their effects on carcass weight, intramuscular fat and fatty acid composition in Hanwoo steers (Korean cattle). Animal Genetics 48, 250-252.

Knuesel MT, Taatjes DJ. 2011. Mediator and post-recruitment regulation of RNA polymerase II. Transcription 2, 28-31.

Komisarek J, Antkowiak I. 2007. The relationship between leptin gene polymorphisms and reproductive traits in Jersey cows. Polish Journal of Veterinary Sciences 10, 193-197.

Larade K, Jiang Z, Zhang Y, Wang WF, Bonner-Weir S, Zhu H, Bunn HF. 2008. Loss of Ncb5or results in impaired fatty acid desaturation, lipoatrophy, and diabetes. The Journal of Biological Chemistry 283, 29285-29291.

Li C, Aldai N, Vinsky M, Dugan MER, McAllister TA. 2011. Association analyses of single nucleotide polymorphisms in bovine stearoyl-CoA desaturase and fatty acid synthase genes with fatty acid composition in commercial cross-bred beef steers. Animal Genetics 43, 93-97.

Li X, Liu X, Nadaf J, Bihan-Duval EL, Berri C, Dunn I, Talbot R, De Koning DJ. 2015. Using targeted resequencing for identification of candidate genes and SNPs for a QTL affecting the pH value of chicken meat. G3 5, 2085-2089.

Liefers SC, Te Pas MFW, Veerkamp RF, Chilliard Y, Delavaud C, Gerritsen R, van der Lende T. 2003. Association of leptin gene polymorphisms with serum leptin concentration in dairy cows. Mammalian Genome 14, 657-663.

Macgregor S. 2007. Most pooling variation in array-based DNA pooling is attributable to array error rather than pool construction error. European Journal of Human Genetics 15, 501-504.

Maras B, Barra D, Dupre S, Pitari G. 1999. Is pantetheinase the actual identity of mouse and human vanin-1 proteins?. FEBS Letters 461, 149-152.

Matsuhashi T, Maruyama S, Uemoto Y, Kobayashi N, Mannen H, Abe T, Sakaguchi S, Kobayashi E. 2011. Effects of bovine fatty acid synthase, stearoyl-coenzyme A desaturase, sterol regulatory element-binding protein 1, and growth hormone gene polymorphisms on fatty acid composition and carcass traits in Japanese Black cattle. Journal of Animal Science 89, 12-22.

Matsumoto H, Shimizu Y, Tanaka A, Nogi T, Tabuchi I, Oyama K, Taniguchi M, Mannen H, Sasazaki S. 2013. The SNP in the promoter region of the bovine ELOVL5 gene influences economic traits including subcutaneous fat thickness. Molecular Biology Reports 40, 3231-3237.

McKay SD, Schnabel RD, Murdoch BM, Matukumalli LK, Aerts J, Coppieters W, Crews D, Neto ED, Gill CA, Gao C, Mannen H, Stothard P, Wang Z, Van Tassell CP, Williams JL, Taylor JF, Moore SS. 2007. Whole genome linkage disequilibrium maps in cattle. BMC Genetics 8, 74.

Minokoshi Y, Kim YB, Peroni OD, Fryer LGD, Müller C, Carling D, Kahn BB. 2002. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339-343.

Mukai F. 1994. Genetic evaluation and selection methods for carcass traits in Japanese Black cattle. Japanese Poultry Science 65, 890-905.

Mukai F, Shinnai Y, Fukushima T. 1985. Optimum proportion of selection in two-stage selection of Japanese Black sires with limited testing capacity. The Japanese Journal of Zootechnical Science 56, 447-455.

Mullock BM, Smith CW, Ihrke G, Bright NA, Lindsay M, Parkinson EJ, Brooks DA, Parton RG, James DE, Luzio JP, Piper RC. 2000. Syntaxin 7 is localized to late endosome compartments, associates with vamp 8, and is required for Late endosome–lysosome fusion. Molecular Biology of the Cell 11, 3137-3153.

Nakajima A, Kawaguchi F, Uemoto Y, Fukushima M, Yoshida E, Iwamoto E, Akiyama T, Kohama N, Kobayashi E, Honda T, Oyama K, Mannen H, Sasazaki S. 2018. A genome wide association study for fat-related traits computed by image analysis in Japanese Black cattle. Animal Science Journal 89, 743-751.

Nagai M, Sakakibara J, Wakui K, Fukushima Y, Igarashi S, Tsuji S, Arakawa M, Ono T. 1997. Localization of the Squalene Epoxidase Gene (SQLE) to Human Chromosome Region 8q24.1. Genomics 44, 141-143.

Narukami T, Sasazaki S, Oyama K, Nogi T, Taniguchi M, Mannen H. 2011. Effect of DNA polymorphisms related to fatty acid composition in adipose tissue of Holstein cattle. Animal Science Journal 82, 406-411.

Nassogne MC, Héron B, Touati G, Rabier D, Saudubray M. 2005. Urea cycle defects: Management and outcome. Journal of Inherited Metabolic Disease 28, 407-414.

Nishimura S, Watanabe T, Mizoshita K, Tatsuda K, Fujita T, Watanabe N, Sugimoto Y, Takasuga A. 2012. Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC Genetics 13. 40.

Nogi T, Honda T, Mukai F, Okagaki T, Oyama K. 2011. Heritabilities and genetic correlations of fatty acid compositions in longissimus muscle lipid with carcass traits in Japanese Black cattle. Journal of Animal Science 89, 615-621.

Ohsaki H, Tanaka A, Hoashi S, Sasazaki S, Oyama K, Taniguchi M, Mukai F, Mannen H. 2009. Effect of SCD and SREBP genotypes on fatty acid composition in adipose tissue of Japanese Black cattle herds. Animal Science Journal 80, 225-232.

O’Keefe W, Wellington H, Mattick R, Stouffer R. 1968. Composition of bovine muscle lipids at various carcass locations. Journal of Food Science 33, 188-192.

Ookura K, Akiyama T, Yoshida E, Fukushima M, Iwamoto E, Oka A, Matsumoto H, Sasazaki S. 2013. Effects of genes on economically important traits of Japanese Black cattle in Hyogo population. Nihon Chikusan Gakkaiho 84, 157-162.

Ordovás L, Roy R, Pampín S, Zaragoza P, Osta R, Rodríguez-Rey JC, Rodellar C. 2008. The g.763G>C SNP of the bovine FASN gene affects its promoter activity via Sp-mediated regulation: implications for the bovine lactating mammary gland. Physiological Genomics 34, 144-148.

Orrù L, Cifuni GF, Piasentier E, Corazzin M, Bovolenta S, Moioli B. 2011. Association analyses of single nucleotide polymorphisms in the LEP and SCD1 genes on the fatty acid profile of muscle fat in Simmental bulls. Meat Science 87, 344-348.

Pan W, Ciociola E, Saraf M, Tumurbaatar B, Tuvdendorj D, Prasad S, Chandalia M, Abate N. 2011. Metabolic consequences of ENPP1 overexpression in adipose tissue. American Journal of Physiology-Endocrinology and Metabolism 301, E901-E911.

Pearson JV, Huentelman MJ, Halperin RF, Tembe WD, Melquist S, Homer N, Brun M, Szelinger S, Coon KD, Zismann VL, Webster JA, Beach T, Sando SB, Aasly JO, Heun R, Jessen F, Kolsch H, Tsolaki M, Daniilidou M, Reiman EM, Papassotiropoulos A, Hutton ML, Stephan DA, Craig DW. 2007. Identification of the genetic basis for complex disorders by use of pooling-based genomewide single-nucleotide-polymorphism association studies. The American Journal of Human Genetics 80, 126-139.

Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, Haden K, Li J, Shaw CA. Belmont J, Cheung SW, Shen RM, Barker DL, Gunderson KL. 2006. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Research 16, 1136-1148.

Pitari G, Malergue F, Martin F, Philippe JM, Massucci MT, Chabret C, Maras B, Dupré S, Naquet P, Galland F. 2000. Pantetheinase activity of membrane-bound Vanin-1: lack of free cysteamine in tissues of Vanin-1 deficient mice. FEBS Letters 483, 149-154.

Reicher S, Ramos-Nieves JM, Hileman SM, Boisclair YR, Gootwine E, Gertler A. 2012. Nonsynonymous natural genetic polymorphisms in the bovine leptin gene affect biochemical and biological characteristics of the mature hormone. Journal of Animal Science 90, 410-418.

Rogers S, Macheda ML, Docherty SE, Carty MD, Henderson MA, Soeller WC, Gibbs EM, James DE, Best JD. 2002. Identification of a novel glucose transporter-like protein—GLUT-12. American Journal of Physiology-Endocrinology and Metabolism 283, E733-E738.

Rudel LL, Parks JS, Sawyer JK. 1995. Compared with dietary monounsaturated and saturated fat, polyunsaturated fat protects African Green Monkeys from coronary artery atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 15, 2101-2110.

Sakuma H, Saito K, Kohira K, Ohhashi F, Shoji N, Uemoto Y. 2017. Estimates of genetic parameters for chemical traits of meat quality in Japanese black cattle. Animal Science Journal 88, 203-212.

Sambrook J, Russell DW: Molecular cloning: a laboratory manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2001.

Sasazaki S, Akiyama K, Narukami T, Matsumoto H, Oyama K, Mannen H. 2014. UTS2R gene polymorphisms are associated with fatty acid composition in Japanese beef cattle. Animal Science Journal 85, 499-505.

Satou M, Nishi Y, Yoh J, Hattori Y, Sugimoto H. 2010. Identification and characterization of acyl-protein thioesterase 1/lysophospholipase I as a ghrelin deacylation/lysophospholipid hydrolyzing enzyme in fetal bovine serum and conditioned medium. Endocrinology 151, 4765-4775.

Sham P, Bader JS, Craig I, O'Donovan M, Owen M. 2002. DNA Pooling: a tool for large-scale association studies. Nature Reviews Genetics 3, 862-871.

Shimo T, Koyama E, Kurio N, Matsumoto K, Okui T, Ibaragi S, Yoshika N, Sasaki A. 2015. Expression and roles of CCN2 in dental epithelial cells. In Vivo 29, 189-196.

Siegrist-Kaiser CA, Pauli V, Juge-Aubry CE, Boss O, Pernin A, Chin WW, Cusin I, Rohner-Jeanrenaud F, Burger AG, Zapf J, Meier CA. 1997. Direct effects of leptin on brown and white adipose tissue. The Journal of Clinical Investigation 100, 2858-2864.

Silva DBS, Crispim BA, Silva LE, Oliveira JA, Siqueira F, Seno LO, Grisolia AB. 2014. Genetic variations in the leptin gene associated with growth and carcass traits in Nellore cattle. Genetics and Molecular Research 13, 3002-3012.

Smith SB, Lunt DK, Chung KY, Choi CB, Tume RK, Zembayashi M. 2006. Adiposity, fatty acid composition, and delta-9 desaturase activity during growth in beef cattle. Animal Science Journal 77, 478-486.

Srisai D, Yin TC, Lee AA, Rouault AAJ, Pearson NA, Grobe JL, Sebag JA. 2017. MRAP2 regulates ghrelin receptor signaling and hunger sensing. Nature Communications 8, 713.

Suenaga Y, Ozaki T, Tanaka Y, Bu Y, Kamijo T, Tokuhisa T, Nakagawa A, Tamura T. 2009. TATA-binding Protein (TBP)-like Protein Is Engaged in Etoposide-induced Apoptosis through Transcriptional Activation of Human TAp63 Gene. Journal of Biologicla Chemistry 284, 35433-35440.

Sun PH, Ye L, Mason MD, Jiang WG. 2013. Protein tyrosine phosphatase kappa (PTPRK) is a negative regulator of adhesion and invasion of breast cancer cells, and associates with poor prognosis of breast cancer. Journal of Cancer Research and Clinical Oncology 139, 1129-1139.

Takigawa M. 2013. CCN2: a master regulator of the genesis of bone and cartilage. Journal of Cell Communication and Signaling 7, 191-201.

Taniguchi M, Utsugi T, Oyama K, Mannen H, Kobayashi M, Tanabe Y, Ogino A, Tsuji S. 2004. Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mammalian Genome 15, 142-148.

Teng MS, Hsu LA, Juan SH, Lin WC, Lee MC, Su CW, Wu S, Ko YL. PLoS ONE 12, e0183187.

Tian J, Zhao Z, Zhang L, Zhang Q, Yu Z, Li J, Yang R. 2013. Association of the leptin gene E2-169T>C and E3-299T>A mutations with carcass and meat quality traits of the Chinese Simmental-cross steers. Gene 518, 443-448.

Uemoto Y, Abe T, Tameoka N, Hasebe H, Inoue K, Nakajima H, Shoji N, Kobayashi M, Kobayashi E. 2010. Whole-genome association study for fatty acid composition of oleic acid in Japanese Black cattle. Animal Genetics 42 141-148.

Uemoto Y, Sasago N, Abe T, Okada H, Maruoka H, Nakajima H, Shoji N, Maruyama S, Kobayashi N, Mannen H, Kobayashi E. 2012. Practical capability of a DNA pool-based genome-wide association study using BovineSNP50 array in cattle population. Animal Science Journal 83, 719-726.

Vladimirov VI, Maher BS, Wormley B, O’Neill FA, Walsh D, Kendler KS, Riley BP. 2009. The trace amine associated receptor (TAAR6) gene is not associated with schizophrenia in the Irish Case-Control Study of Schizophrenia (ICCSS) sample. Schizophrenia Research 107, 249-254.

Wang WJ, Tay HG, Soni R, Perumal GS, Goll MG, Macaluso FP, Asara JM, Amack JD, Tsou MFB. 2013. CEP162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base. Nature Cell Biology 15, 591-601.

Watanabe T, Hirano T, Takano A, Mizoguchi Y, Sugimoto Y, Takasuga A. (2008). Linkage disequilibrium structures in cattle and their application breed identification testing. Animal Genetics 39, 374-382.

Wheeler TL, Cundiff LV, Shackelford SD, Koohmaraie M. 2004. Characterization of biological types of cattle (Cycle VI): Carcass, yield, and longissimus palatability traits. Journal of Animal Science 82, 1177-1189.

Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou E, Sheard PR, Enser M. 2003. Effects of fatty acids on meat quality: a review. Meat Science 66, 21-32.

Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR. 2001. Ghrelin enhances appetite and increases food intake in humans. The Journal of Clinical Endocrinology & Metabolism 86, 5992-5995.

Yang Z, Li DM, Xie Q, Day DQ. 2015. Protein expression and promoter methylation of the candidate biomarker TCF21 in gastric cancer. Journal of Cancer Research and Clinical Oncology 141, 211-220.

Yokota S, Sugita H, Ardiyanti A, Shoji N, Nakajima H, Hosono M, Otomo Y, Suda Y, Katoh K, Suzuki K. 2012. Contributions of FASN and SCD polymorphisms on fatty acid composition in muscle from Japanese Black cattle. Animal Genetics 43, 790-792.

Yokota S, Sugita H, Otomo Y, Suda Y, Suzuki K. 2011. Genetic relation between fatty acid composition and carcass traits in Japanese Black Cattle. Tohoku journal of animal science and technology 60, 80-85.

Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friendman JM. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425-432.

Zhu H, Larade K, Jackson TA, Xie J, Ladoux A, Acher H, Berchner-Pfannschmidt U, Fandrey J, Cross AR, Lukat-Rodgers GS, Rodgers KR, Bunn HF. 2004. NCB5OR is a novel soluble NAD(P)H reductase localized in the endoplasmic reticulum. The Journal of Biological Chemistry 279, 30316-30325.

Zhu H, Qiu H, Yoon HW, Huang S, Bunn HF. 1999. Identification of a cytochrome b-type NAD(P)H oxidoreductase ubiquitously expressed in human cells. Proceedings of the National Academy of Sciences, 96, 14742-14747.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る