リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Renalase in the skeletal muscle contributes to cell protective effect」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Renalase in the skeletal muscle contributes to cell protective effect

時野谷, 勝幸 筑波大学 DOI:10.15068/0002000224

2021.06.30

概要

Renalase is a recently discovered flavin adenine dinucleotide (FAD) - dependent soluble monoamine oxidase [Xu et al. 2005]. Its primary functions include catecholamine metabolism and blood pressure regulation [Xu et al. 2005; Wu et al. 2011; Desir et al. 2012]. Renalase is predominantly expressed in the proximal tubule in the kidney. It is also expressed in other tissues, including the skeletal muscle, heart, and intestine [Xu et al. 2005]. In addition to its function in catecholamine metabolism, renalase was recently reported to inhibit apoptosis, inflammation, fibrosis, and oxidative stress [Lee et al. 2013; Wang et al. 2014, 2015, 2016; Guo et al. 2014; Du et al. 2015; Wu et al. 2017, 2018; Huang et al. 2019]. Renalase binds to its receptor, plasma membrane Ca2+ ATPase isoform 4b (PMCA 4b) [Wang et al. 2015] and is involved in cell survival and protection. Wang et al. (2014) reported that it makes phosphorylated protein kinase B (Akt) in vitro study.

Exercise is a valuable means of increasing or maitanining health and fitness [Lobero et al. 2014]. Exercise can be aerobic and anerobic, and can involve many activities, such as running, resistance exercise, and ball-related games. Skeletal muscle is mainly involved in body movement. Skeletal muscle is a highly adaptive (plastic) tissue that can increase the number and growth of muscle cells (hypertrophy) or display atrophy. The skeletal muscle comprises approximately 40% of the body mass in humans. The finding that exercise promotes better glucose uptake in the skeletal muscle in people with type 2 diabetes highlights the importance of maintain skeletal muscle in good condition [Stanford and Goodyear. 2014].

Renalase expression is affected by exercise in animal models and in humans [Czarkowska-Paczek et al. 2013; Yoshida et al. 2017]. Czarkowska-Paczek et al. (2013) examined the protein and mRNA expression of renalase in the serum and gastrocnemius muscle following exercise. The authors described mRNA expression of the white portion in gastrocnemius muscles of rats after making them run for 60 min at 28 m/min on a treadmill. An earlier study reported the significantly increased serum renalase concentration following long-term exercise (30 km running) in humans [Yoshida et al. 2017]. In addition, renalase expression in skeletal muscle and concentration in the blood were increased by acute moderate-intensity exercise in rat model [Yoshida’s doctoral thesis and Tokinoya and Yoshida et al. 2020]. On the other hand, renalase mRNA expression in the other tissues including heart, liver, lung, and andrenal grand did not change after acute exercise.

However, renalase expression in the kidney was decreased after moderate-intensity exercise [Yoshida’s doctoral thesis and Tokinoya and Yoshida et al. 2020]. Although the dynamics of renalase expression during transient exercise has been studied, its mechanism and physiological effects have remained unclear.

参考文献

Ameln H, Gustafsson T, Sundberg CJ, Okamoto K, Jansson E, Poellinger L & Makino Y (2005). Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J 19, 1009–1011.

Aoi W, Naito Y, Takanami Y, Kawai Y, Sakuma K, Ichikawa H, Yoshida N & Yoshikawa T (2004). Oxidative stress and delayed-onset muscle damage after exercise. Free Radic Biol Med 37, 480–487.

Armstrong RB & Phelps RO (1984). Muscle fiber type composition of the rat hindlimb.Am J Anat 171, 259–272.

Baraka A, El Ghotny S (2012). Cardioprotective effect of renalase in 5/6 nephrectomized rats. J Cardiovasc Pharmacol Ther 17, 412–416.

Beaupre BA, Hoag MR & Moran GR (2015). Renalase does not catalyze the oxidation of catecholamines. Arch Biochem Biophys 579, 62–66.

Boomsma F & Tipton KF (2007). Renalase, a catecholamine-metabolising enzyme? J Neural Transm 114, 775–776.

Czarkowska-Paczek B, Zendzian-Piotrowska M, Gala K, Sobol M & Paczek L (2013) Exercise differentially regulates renalase expression in skeletal muscle and kidney. Tohoku J. Exp. Med., 231, 321–329.

Coffey VG, Jemiolo B, Edge J, Garnham AP, Trappe SW & Hawley JA (2009). Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am J Physiol - Regul Integr Comp Physiol 297, 1441– 1451.

Deldicque L, Atherton P, Patel R, Theisen D, Nielens H, Rennie MJ & Francaux M (2008).Effects of resistance exercise with and without creatine supplementation on gene expression and cell signaling in human skeletal muscle. J Appl Physiol 104, 371–378.

DePinho RA, Lee M, Tang H, Khuong A, Sugiarto S, Garner M, Goldman D, Guan K-L, Wright E, Shrager JB, Inoki K & Paik J (2014). mTORC1 Promotes

Denervation-induced muscle atrophy through a mechanism involving the activation of foxO and E3 ubiquitin ligases. Sci Signal 7, ra18–ra18.

Desir GV. (2009). Regulation of blood pressure and cardiovascular function by renalase.Kidney Int 76, 366–370.

Desir GV., Tang L, Wang P, Li G, Sampaio-Maia B, Quelhas-Santos J, Pestana M & Velazquez H (2012). Renalase lowers ambulatory blood pressure by metabolizing circulating adrenaline. J Am Heart Assoc 1, e002634–e002634.

Du M, Huang K, Huang D, Yang L, Gao L, Wang X, Huang D, Li X, Wang C, Zhang F, Wang Y, Cheng M, Tong Q, Qin G, Huang K & Wang L (2015). Renalase is a novel target gene of hypoxia-inducible factor-1 in protection against cardiac ischaemia-reperfusion injury. Cardiovasc Res 105, 182–191.

Febbraio MA & Pedersen BK (2005). Contraction-induced myokine production and release: Is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 33, 114–119.

Guo X, Hollander L, Macpherson D, Wang L, Velazquez H, Chang J, Safirstein R, Cha C, Gorelick F & Desir G V. (2016). Inhibition of renalase expression and signaling has antitumor activity in pancreatic cancer. Sci Rep 6, 1–10.

Hollander L, Guo X, Velazquez H, Chang J, Safirstein R, Kluger H, Cha C & Desir G V. (2016). Renalase expression by melanoma and tumor-associated macrophages promotes tumor growth through a STAT3-mediated mechanism. Cancer Res 76, 3884–3894.

Huang Z, Li Q, Yuan Y, Zhang C, Wu L, Liu X, Cao W, Guo H, Duan S, Xu X, Zhang B & Xing C (2019). Renalase attenuates mitochondrial fission in cisplatin-induced acute kidney injury via modulating sirtuin-3. Life Sci 222, 78–87.

Ji LL, Gomez-Cabrera MC, Steinhafel N & Vina J (2004). Acute exercise activates nuclear factor (NF)-κB signaling pathway in rat skeletal muscle. FASEB J 18, 1499–1506.

Ji LL (2008). Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling. Free Radic Biol Med 44, 142–152.

Kalyani A, Sonawane PJ, Khan AA, Subramanian L, Ehret GB, Mullasari AS & Mahapatra NR (2015). Post-transcriptional regulation of renalase gene by miR-29 and miR-146 microRNAs: implications for cardiometabolic disorders. J Mol Biol 427, 2629–2646.

Katch VL, McArdle WD & Katch FI (2011) Essentials of exercise physiology. In The Cardiovascular System and Exercise, 4th ed., pp. 306-311.

Kim H, Jang M, Park R, Jo D, Choi I, Choe J, Oh WK & Park J (2018). Conessine treatment reduces dexamethasone-induced muscle atrophy by regulating MuRF1 and Atrogin-1 expression. J Microbiol Biotechnol 28, 520–526.

Kun M, Mallidis C, Artaza J, Taylor W, Gonzalez-Cadavid N & Bhasin S (2001).Characterization of 5′-regulatory region of human myostatin gene: Regulation by dexamethasone in vitro. Am J Physiol - Endocrinol Metab 281, 1128–1136.

Kuo T, Lew MJ, Mayba O, Harris CA, Speed TP & Wang JC (2012). Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc Natl Acad Sci U S A 109, 11160–11165.

Kuznetsov AV, Tiivel T, Sikk P, Kaambre T, Kay L, Daneshrad Z, Rossi A, Kadaja L, Peet N, Seppet E, Saks VA (1996). Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo. Eur J Biochem 241, 909–915.

Lee HT, Kim JY, Kim M, Wang P, Tang L, Baroni S, D’Agati VD & Desir GV (2013).Renalase protects against ischemic AKI. J Am Soc Nephrol 24, 445–455.

Liu J, Peng Y, Wang X, Fan Y, Qin C, Shi L, Tang Y, Cao K, Li H, Long J & Liu J (2016). Mitochondrial dysfunction launches dexamethasone-induced skeletal muscle atrophy via AMPK/FOXO3 signaling. Mol Pharm 13, 73–84.

Lobelo F, Stoutenberg M & Hutber A (2014). The exercise is medicine global health initiative: A 2014 update. Br J Sports Med 48, 1627–1633.

Louis E, Raue U, Yang Y, Jemiolo B & Trappe S (2007). Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol 103, 1744–1751.

Milani M, Ciriello F, Baroni S, Pandini V, Canevari G, Bolognesi M & Aliverti A (2011). FAD-binding site and NADP reactivity in human renalase: A new enzyme involved in blood pressure regulation. J Mol Biol 411, 463–473.

Musch TI, Friedman DB, Pitetti KH, Haidet GC, Stray-Gundersen J, Mitchell JH & Ordway GA (1987). Regional distribution of blood flow of dogs during graded dynamic exercise. J Appl Physiol 63, 2269-77.

Ohira Y, Yoshinaga T, Ohara M, Kawano F, Wang XD, Higo Y, Terada M, Matsuoka Y, Roy RR & Edgerton VR (2006). The role of neural and mechanical influences in maintaining normal fast and slow muscle properties. Cells Tissues Organs 182, 129– 142.

Peskin AV. & Winterbourn CC (2000). A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293, 157–166.

Rom O & Reznick AZ (2016). The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med 98, 218–230.

Sakai H, Kimura M, Tsukimura Y, Yabe S, Isa Y, Kai Y, Sato F, Kon R, Ikarashi N, Narita M, Chiba Y & Kamei J (2018). Dexamethasone exacerbates cisplatin-induced muscle atrophy. Clin Exp Pharmacol Physiol1–10.

Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S,Lecker SH & Goldberg AL (2004). Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117,399–412.

Stanford KI & Goodyear LJ (2014). Exercise and type 2 diabetes: Molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ 38, 308–314.

Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD & Glass DJ (2004). The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14, 395–403.

Sieck GC & Fournier M (1989). Diaphragm motor unit recruitment during ventilatory and nonventilatory behaviors, J Appl Physiol 66, 2539–2545.

Shaw M, Cohen P & Alessi DR (1998). The activation of protein kinase B by H2O2 or heat shock is mediated by phosphoinositide 3-kinase and not by mitogen-activated protein kinase-activated protein kinase-2. Biochem J 336, 241–246.

Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda SI, Nakae J, Tagata Y, Nishitani S, Takehana K, Sano M, Fukuda K, Suematsu M, Morimoto C & Tanaka H (2011). Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab 13, 170–182.

Son YH, Jang EJ, Kim YW & Lee JH (2017). Sulforaphane prevents dexamethasone-induced muscle atrophy via regulation of the Akt/Foxo1 axis in C2C12 myotubes. Biomed Pharmacother 95, 1486–1492.

Sonawane PJ, Gupta V, Sasi BK, Kalyani A, Natarajan B, Khan AA, Sahu BS & Mahapatra NR (2014). Transcriptional regulation of the novel monoamine oxidase renalase: Crucial roles of transcription factors Sp1, STAT3, and ZBP89. Biochemistry 53, 6878–6892.

Soya H, Mukai A, Deocaris CC, Ohiwa N, Chang H, Nishijima T, Fujikawa T, Togashi K & Saito T (2007). Threshold-like pattern of neuronal activation in the hypothalamus during treadmill running: Establishment of a minimum running stress (MRS) rat model. Neurosci Res 58, 341–348.

Wang F, Cai H, Zhao Q, Xing T, Li J & Wang N (2014). Epinephrine evokes renalase secretion via α-adrenoceptor/NF-κB pathways in renal proximal tubular epithelial cells. Kidney Blood Press Res 39, 252–259.

Wang F, Yin J, Lu Z, Zhang G, Li J, Xing T, Zhuang S & Wang N (2016). Limb ischemic preconditioning protects against contrast-induced nephropathy via renalase.EBioMedicine 9, 356–365.

Wang H, Kubica N, Ellisen LW, Jefferson LS & Kimball SR (2006). Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem 281, 39128–39134.

Wang L, Velazquez H, Moeckel G, Chang J, Ham A, Lee HT, Safirstein R & Desir GV. (2014). Renalase prevents AKI independent of amine oxidase activity. J Am Soc Nephrol 25, 1226–1235.

Wang L, Velazquez H, Chang J, Safirstein R, Desir GV. (2015). Identification of a receptor for extracellular renalase. PLoS One 10, 1–13.

Wang XJ, Xiao JJ, Liu L, Jiao HC & Lin H (2017). Excessive glucocorticoid-induced muscle MuRF1 overexpression is independent of Akt/FoXO1 pathway. Biosci Rep 37, BSR20171056.

Wang Y, Liu FQ, Wang D, Mu JJ, Ren KY, Guo TS, Chu C, Wang L, Geng LK & Yuan ZY (2014). Effect of salt intake and potassium supplementation on serum renalase levels in Chinese Adults: A randomized trial. Med (United States) 93, 1–5.

Wang Y & Pessin JE (2013). Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 16, 243–250.

Wang Y, Safirstein R, Velazquez H, Guo XJ, Hollander L, Chang J, Chen TM, Mu JJ & Desir GV (2017). Extracellular renalase protects cells and organs by outside-in signalling. J Cell Mol Med 21, 1260–1265.

Wang Y, Wang D, Chu C, Mu JJ, Wang M, Liu FQ, Xie BQ, Yang F, Dong ZZ & Yuan ZY (2015). Effect of salt intake and potassium supplementation on urinary renalase and serum dopamine levels in Chinese adults. Cardiol 130, 242–248.

Wu Y, Xu J, Velazquez H, Wang P, Li G, Liu D, Sampaio-Maia B, Quelhas-Santos J, Russell K, Russell R, Flavell RA, Pestana M, Giordano F & Desir G V. (2011). Renalase deficiency aggravates ischemic myocardial damage. Kidney Int 79, 853– 860.

Wu Y, Wang L, Deng D, Zhang Q & Liu W (2017). Renalase protects against renal fibrosis by inhibiting the activation of the ERK signaling pathways. Int J Mol Sci 18, 1–25.

Wu Y, Wang L, Wang X, Wang Y, Zhang Q & Liu W (2018). Renalase contributes to protection against renal fibrosis via inhibiting oxidative stress in rats. Int Urol Nephrol 50, 1347–1354.

Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, Wu Y, Peixoto A, Crowley S & Desir GV (2005). Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest 115, 1275–1280.

Yang Y, Jemiolo B & Trappe S (2006). Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol 101, 1442– 1450.

Yin J, Lu Z, Wang F, Jiang Z, Lu L, Miao N & Wang N (2016). Renalase attenuates hypertension, renal injury and cardiac remodelling in rats with subtotal nephrectomy. J Cell Mol Med 20, 1106–1117.

Yılmaz ZV, Akkaş E, Yıldırım T, Yılmaz R and Erdem Y (2016). A novel marker in pregnant with preeclampsia: renalase. J Matern Fetal Neonatal Med 26, 1-6.

Yoshida Y, Sugasawa T, Hoshino M, Tokinoya K, Ishikura K, Ohmori H & Takekoshi K (2017). Transient changes in serum renalase concentration during long-distance running: The case of an amateur runner under continuous training. J Phys Fit Sport Med 6, 159–166.

Yoshida Y, Sugasawa T, Tokinoya K, Namba S & Kazuhiro Takekoshi (2017).Epinephrine upregulates renalase expression in cultured C2C12 muscle cells. Int J Anal Bio-Sci 5, 61–65.

Zbroch E, Malyszko J, Malyszko JS, Koc-Zorawska E, Mysliwiec M. Renalase, a Novel Enzyme Involved in Blood Pressure Regulation, Is Related to Kidney Function but Not to Blood Pressure in Hemodialysis Patients. Kidney Blood Press Res.2013;35(6):395–9.

Zhao B, Zhao Q, Li J, Xing T, Wang F & Wang N (2015). Renalase protects against contrast-induced nephropathy in Sprague-Dawley rats. PLoS One 10, 1–9.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る