リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evaluation of Mongolian compound library for potential antimalarial and anti-Toxoplasma agents」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evaluation of Mongolian compound library for potential antimalarial and anti-Toxoplasma agents

Banzragchgarav Orkhon Ariefta Nanang R. Murata Toshihiro Myagmarsuren Punsantsogvoo Battsetseg Badgar Battur Banzragch Batkhuu Javzan Nishikawa Yoshifumi 帯広畜産大学

2022.08.04

概要

179 compounds in a Mongolian compound library were investigated for their inhibitory effect on the in vitro growth of Plasmodium falciparum and Toxoplasma gondii. Among these compounds, brachangobinan A at a half-maximal inhibition concentration (IC50) of 2.62 μM and a selectivity index (SI) of 27.91; 2-(2′-hydroxy-5′-O-methylphenyl)-5-(2″,5″-dihydroxyphenyl)oxazole (IC50 3.58 μM and SI 24.66); chrysosplenetin (IC50 3.78 μM and SI 15.26); 4,11-di-O-galloylbergenin (IC50 3.87 μM and SI 13.38); and 2-(2′,5′-dihydroxyphenyl)-5-(2″-hydroxyphenyl)oxazole (IC50 6.94 μM and SI 11.48) were identified as potential inhibitors of P. falciparum multiplication. Additionally, tricin (IC50 12.94 μM and SI > 23.40) was identified as a potential inhibitor of T. gondii multiplication. Our findings represent a good starting point for developing novel antimalarial and anti-Toxoplasma therapeutics from Mongolian compounds.

この論文で使われている画像

参考文献

[1] I.R. Dunay, K. Gajurel, R. Dhakal, O. Liesenfeld, J.G. Montoya, Treatment of Toxoplasmosis : Historical Perspective , Animal, Clin. Microbiol. Infect. 31 (2018) 1–33.

[2] G. Subramanian, M.A. Belekar, A. Shukla, J.X. Tong, A. Sinha, T.T.T. Chu, A.S. Kulkarni, P.R. Preiser, D.S. Reddy, K.S.W. Tan, D. Shanmugam, R. Chandramohanadas, Targeted Phenotypic Screening in Plasmodium falciparum and Toxoplasma gondii Reveals Novel Modes of Action of Medicines for Malaria Venture Malaria Box Molecules, MSphere. 3 (2018). https://doi.org/10.1128/msphere.00534-17.

[3] M.P. Barrett, D.E. Kyle, L.D. Sibley, J.B. Radke, R.L. Tarleton, Protozoan persister-like cells and drug treatment failure, Nat. Rev. Microbiol. 17 (2019) 607–620. https://doi.org/10.1038/s41579-019-0238-x.

[4] E.G. Tse, M. Korsik, M.H. Todd, The past, present and future of anti-malarial medicines, Malar. J. 18 (2019). https://doi.org/10.1186/s12936-019-2724-z.

[5] WHO, World malaria report 2020, 2020.

[6] M.A. Biamonte, J. Wanner, K.G. Le Roch, Recent advances in malaria drug discovery, Bioorg. Med. Chem. Lett. 23 (2013) 2829–2843. https://doi.org/10.1016/j.bmcl.2013.03.067.

[7] M. Montazeri, S. Mehrzadi, M. Sharif, S. Sarvi, A. Tanzifi, S.A. Aghayan, A. Daryani, Drug Resistance in Toxoplasma gondii, Front. Microbiol. 9 (2018). https://doi.org/10.3389/fmicb.2018.02587.

[8] A.L. Harvey, R. Edrada-Ebel, R.J. Quinn, The re-emergence of natural products for drug discovery in the genomics era, Nat. Rev. Drug Discov. 14 (2015) 111–129. https://doi.org/10.1038/nrd4510.

[9] N.E. Thomford, D.A. Senthebane, A. Rowe, D. Munro, P. Seele, A. Maroyi, K. Dzobo, Natural products for drug discovery in the 21st century: Innovations for novel drug discovery, Int. J. Mol. Sci. 19 (2018). https://doi.org/10.3390/ijms19061578.

[10] O. Banzragchgarav, T. Murata, B. Tuvshintulga, K. Suganuma, I. Igarashi, N. Inoue, J. Batkhuu, K. Sasaki, Chemical constituents of Bergenia crassifolia roots and their growth inhibitory activity against Babesia bovis and B. bigemina, Phytochem. Lett. 29 (2019) 79– 83. https://doi.org/10.1016/j.phytol.2018.11.009.

[11] D. Badral, B. Odonbayar, T. Murata, T. Munkhjargal, B. Tuvshintulga, I. Igarashi, K. Suganuma, N. Inoue, A.H. Brantner, G. Odontuya, K. Sasaki, J. Batkhuu, Flavonoid and Galloyl Glycosides Isolated from Saxifraga spinulosa and Their Antioxidative and Inhibitory Activities against Species That Cause Piroplasmosis, J. Nat. Prod. 80 (2017) 2416–2423. https://doi.org/10.1021/acs.jnatprod.7b00142.

[12] B. Odonbayar, T. Murata, K. Suganuma, Y. Ishikawa, B. Buyankhishig, J. Batkhuu, K. Sasaki, Acylated Lignans Isolated from Brachanthemum gobicum and Their Trypanocidal Activity, J. Nat. Prod. 82 (2019) 774–784. https://doi.org/10.1021/acs.jnatprod.8b00670.

[13] O. Banzragchgarav, T. Murata, G. Odontuya, B. Buyankhishig, K. Suganuma, B.O. Davaapurev, N. Inoue, J. Batkhuu, K. Sasaki, Trypanocidal Activity of 2,5- Diphenyloxazoles Isolated from the Roots of Oxytropis lanata, J. Nat. Prod. 79 (2016) 2933–2940. https://doi.org/10.1021/acs.jnatprod.6b00778.

[14] S. Nurbek, T. Murata, K. Suganuma, Y. Ishikawa, B. Buyankhishig, T. Kikuchi, T. Byambajav, B.O. Davaapurev, K. Sasaki, J. Batkhuu, Isolation and evaluation of trypanocidal activity of sesquiterpenoids, flavonoids, and lignans in Artemisia sieversiana collected in Mongolia, J. Nat. Med. 74 (2020) 750–757. https://doi.org/10.1007/s11418- 020-01429-2.

[15] B. Buyankhishig, T. Murata, K. Suganuma, J. Batkhuu, K. Sasaki, Hyaluronidase inhibitory saponins and a trypanocidal isoflavonoid from the aerial parts of Oxytropis lanata, Fitoterapia. 145 (2020) 104608. https://doi.org/10.1016/j.fitote.2020.104608.

[16] D. Ganchimeg, B. Batbold, T. Murata, B.O. Davaapurev, T. Munkhjargal, B. Tuvshintulga, K. Suganuma, I. Igarashi, B. Buyankhishig, K. Sasaki, D. Batsuren, J. Batkhuu, Flavonoids isolated from the flowers of Pulsatilla flavescens and their anti- piroplasm activity, J. Nat. Med. 73 (2019). https://doi.org/10.1007/s11418-019-01294-8.

[17] O. Banzragchgarav, J. Batkhuu, P. Myagmarsuren, B. Battsetseg, B. Battur, Y. Nishikawa, In Vitro Potently Active Anti-Plasmodium and Anti-Toxoplasma Mongolian Plant Extracts, Acta Parasitol. 1 (2021) 3. https://doi.org/10.1007/s11686-021-00401-8.

[18] E. Selenge, T. Murata, S. Tanaka, K. Sasaki, J. Batkhuu, F. Yoshizaki, Monoterpene glycosides, phenylpropanoids, and acacetin glycosides from Dracocephalum foetidum, Phytochemistry. 101 (2014) 91–100. https://doi.org/10.1016/j.phytochem.2014.02.007.

[19] B. Odonbayar, T. Murata, J. Batkhuu, K. Yasunaga, R. Goto, K. Sasaki, Antioxidant Flavonols and Phenolic Compounds from Atraphaxis frutescens and Their Inhibitory Activities against Insect Phenoloxidase and Mushroom Tyrosinase, J. Nat. Prod. 79 (2016) 3065–3071. https://doi.org/10.1021/acs.jnatprod.6b00720.

[20] T. Murata, E. Selenge, S. Oikawa, K. Ageishi, J. Batkhuu, K. Sasaki, F. Yoshizaki, Cholinesterase-inhibitory diterpenoids and chemical constituents from aerial parts of Caryopteris mongolica, J. Nat. Med. 69 (2015) 471–478. https://doi.org/10.1007/s11418- 015-0908-6.

[21] G. Odontuya, O. Banzragchgarav, T. Murata, J. Batkhuu, K. Sasaki, F. Yoshizaki, Antibacterially active phenolic lipid derivatives from Comarum salesovianum (Steph.) Aschers. et Gr., Phytochem. Lett. 13 (2015) 360–364. https://doi.org/10.1016/j.phytol.2015.07.020.

[22] A.- Plasmodium, A.- Toxoplasma, A. Leesombun, Y. Nishikawa, Ethanol Extracts from Thai Plants have Anti-Plasmodium and Anti-Toxoplasma Activities In Vitro, (n.d.). https://doi.org/10.2478/s11686-019-00036-w.

[23] A. Leesombun, M. Iijima, B. Pagmadulam, B. Orkhon, H. Doi, K. Issiki, R. Sawa, C. ichi Nihei, Y. Nishikawa, Metacytofilin has potent anti-malarial activity, Parasitol. Int. 81 (2021) 102267. https://doi.org/10.1016/j.parint.2020.102267.

[24] B.C. Evans, C.E. Nelson, S.S. Yu, K.R. Beavers, A.J. Kim, H. Li, H.M. Nelson, T.D. Giorgio, C.L. Duvall, Ex vivo red blood cell hemolysis assay for the evaluation of pH- responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs., J. Vis. Exp. (2013) 50166. https://doi.org/10.3791/50166.

[25] Y. Nishikawa, X. Xuenan, L. Makala, O. Vielemeyer, K.A. Joiner, H. Nagasawa, Characterisation of Toxoplasma gondii engineered to express mouse interferon-gamma, Int. J. Parasitol. 33 (2003) 1525–1535. https://doi.org/10.1016/S0020-7519(03)00204-2.

[26] G. Saadatnia, H. Ghani, H. Khoo, A. Rahmah, Optimization of Toxoplasma gondii cultivation in VERO cell line, 2010.

[27] A. Leesombun, S. Boonmasawai, N. Shimoda, Y. Nishikawa, Effects of extracts from thai piperaceae plants against infection with toxoplasma gondii, PLoS One. 11 (2016). https://doi.org/10.1371/journal.pone.0156116.

[28] A. Khan, M.E. Grigg, Toxoplasma gondii: Laboratory maintenance and growth, Curr. Protoc. Microbiol. 2017 (2017) 20C.1.1-20C.1.17. https://doi.org/10.1002/cpmc.26.

[29] A. Leesombun, S. Boonmasawai, Y. Nishikawa, Ethanol Extracts from Thai Plants have Anti-Plasmodium and Anti-Toxoplasma Activities In Vitro, Acta Parasitol. 64 (2019) 257–261. https://doi.org/10.2478/s11686-019-00036-w.

[30] T. Goyal, C.L. Schmotzer, Validation of hemolysis index thresholds optimizes detection of clinically significant hemolysis, Am. J. Clin. Pathol. 143 (2015) 579–583. https://doi.org/10.1309/AJCPDUDE1HRA0YMR.

[31] J. Prudhomme, E. McDaniel, N. Ponts, S. Bertani, W. Fenical, P. Jensen, K. Le Roch, Marine actinomycetes: A new source of compounds against the human malaria parasite, PLoS One. 3 (2008). https://doi.org/10.1371/journal.pone.0002335.

[32] S. Kakkar, B. Narasimhan, A comprehensive review on biological activities of oxazole derivatives, BMC Chem. 13 (2019). https://doi.org/10.1186/s13065-019-0531-9.

[33] H. Kolodziej, A.F. Kiderlen, Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells, Phytochemistry. 66 (2005) 2056–2071. https://doi.org/10.1016/j.phytochem.2005.01.011.

[34] M.M. Da Silva, M. Comin, T.S. Duarte, M.A. Foglio, J.E. De Carvalho, M. Do Carmo Vieira, A.S.N. Formagio, Synthesis, antiproliferative activity and molecular properties predictions of galloyl derivatives, Molecules. 20 (2015) 5360–5373. https://doi.org/10.3390/molecules20045360.

[35] H. Shibayama, Y. Ueda, T. Tanaka, T. Kawabata, Seven-Step Stereodivergent Total Syntheses of Punicafolin and Macaranganin, J. Am. Chem. Soc. 143 (2021) 1428–1434. https://doi.org/10.1021/jacs.0c10714.

[36] H. Khan, H. Amin, A. Ullah, S. Saba, J. Rafique, K. Khan, N. Ahmad, S.L. Badshah, Antioxidant and Antiplasmodial Activities of Bergenin and 11- O -Galloylbergenin Isolated from Mallotus philippensis, Oxid. Med. Cell. Longev. 2016 (2016). https://doi.org/10.1155/2016/1051925.

[37] N. Tajuddeen, F.R. Van Heerden, Antiplasmodial natural products: An update, Malar. J. 18 (2019). https://doi.org/10.1186/s12936-019-3026-1.

[38] Subeki, H. Matsuura, K. Takahashi, M. Yamasaki, O. Yamato, Y. Maede, K. Katakura, S. Kobayashi, Trimurningsih, Chairul, T. Yoshihara, Anti-babesial and anti-plasmodial compounds from Phyllanthus niruri, J. Nat. Prod. 68 (2005). https://doi.org/10.1021/np0497245.

[39] V. Ramanandraibe, P. Grellier, M.T. Martin, A. Deville, R. Joyeau, D. Ramanitrahasimbola, E. Mouray, P. Rasoanaivo, L. Mambu, Antiplasmodial phenolic compounds from Piptadenia pervillei, Planta Med. 74 (2008). https://doi.org/10.1055/s- 2008-1034328.

[40] T.J. Schmidt, S.A. Khalid, A.J. Romanha, T.MA. Alves, M.W. Biavatti, R. Brun, F.B. Da Costa, S.L. de Castro, V.F. Ferreira, M.V.G. de Lacerda, J.H.G. Lago, L.L. Leon, N.P. Lopes, R.C. das Neves Amorim, M. Niehues, I.V. Ogungbe, The Potential of Secondary Metabolites from Plants as Drugs or Leads Against Protozoan Neglected Diseases - Part II, Curr. Med. Chem. 19 (2012). https://doi.org/10.2174/092986712800229087.

[41] S. Wei, H. Ji, B. Yang, L. Ma, Z. Bei, X. Li, H. Dang, X. Yang, C. Liu, X. Wu, J. Chen, Impact of chrysosplenetin on the pharmacokinetics and anti-malarial efficacy of artemisinin against Plasmodium berghei as well as in vitro CYP450 enzymatic activities in rat liver microsome, Malar. J. 14 (2015). https://doi.org/10.1186/s12936-015-0929-3.

[42] A.L. Santos, E.S. Yamamoto, L.F.D. Passero, M.D. Laurenti, L.F. Martins, M.L. Lima, M. Uemi, M.G. Soares, J.H.G. Lago, A.G. Tempone, P. Sartorelli, Antileishmanial Activity and Immunomodulatory Effects of Tricin Isolated from Leaves of Casearia arborea (Salicaceae), Chem. Biodivers. 14 (2017). https://doi.org/10.1002/cbdv.201600458.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る