リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Isolation and characterization of antiprotozoal compound-producing Streptomyces species from Mongolian soils」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Isolation and characterization of antiprotozoal compound-producing Streptomyces species from Mongolian soils

Pagmadulam Baldorj Tserendulam Dugarsuren Rentsenkhand Tserennadmid Igarashi Masayuki Sawa Ryuichi Nihei Coh-ichi Nishikawa Yoshifumi 帯広畜産大学

2021.02.01

概要

Natural resources are recognized as important sources of potential drugs for treating various infections, and microorganisms are a rich natural source of diverse compounds. Among the world's microorganisms, actinomycetes, which are abundant in soil and marine, are the well-known producers of a wide range of bioactive secondary metabolites and antibiotics. In the present study, four actinomycetes (samples N25, N6, N18, and N12) were isolated from soil samples in Mongolia. Phylogenetic analysis of these isolates revealed that they share the highest similarity with Streptomyces canus (N25), S. cirratus (N6), S. bacillaris (N18) and S. peucetius (N12), based on 16S rRNA gene sequencing. Crude extracts were obtained from them using ethyl acetate, and the crude fractions were separated by thin layer chromatography. The fractions were then evaluated for their cytotoxicities and their anti-Toxoplasma and antimalarial activities in vitro. The S. canus (N25) crude extract was selected for further chemical characterization based on its antiprotozoal activities. Using liquid chromatography-high resolution mass spectrometry, phenazine-1-carboxylic acid (PCA) was detected and identified in the active fractions of the metabolites from strain N25. We next confirmed that commercially available PCA possesses antiprotozoal activity against T. gondii (IC50: 55.5 μg/ml) and Plasmodium falciparum (IC50: 6.4 μg/ml) in vitro. The results of this study reveal that soil actinomycetes are potential sources of antiprotozoal compounds, and that PCA merits further investigation as an anti-protozoal agent.

この論文で使われている画像

参考文献

363

[1] WHO (World Health Organization) World malaria report. Geneva: World Health

364

Organization; License: CC BY-NC-SA 3.0 IGO, (2017).

16

365

[2] E.A. Ashley, M. Dhorda, R.M. Fairhurst, C. Amaratunga, P. Lim, S. Suon, S. Sreng, J.M.

366

Anderson, S. Mao, B. Sam, C. Sopha, C.M. Chuor,

367

Pukrittayakamee, P. Jittamala,

368

Runcharoen, T.Y. Hien, N.T. Thuy-Nhien, N.V. Thanh, N.H. Phu, Y. Htut, K-T. Han, K.H.

369

Aye, O.A. Mokuolu, R.R. Olaosebikan, O.O. Folaranmi, M. Mayxay, M. Khanthavong, B.

370

Hongvanthong, P.N. Newton, M.A. Onyamboko, C.I. Fanello, A.K. Tshefu, N. Mishra, N.

371

Valecha, A.P. Phyo, F. Nosten, P. Yi, R. Tripura, S. Borrmann, M. Bashraheil, J. Peshu, M.A.

372

Faiz, A. Ghose, M.A. Hossain, R. Samad, M.R. Rahman, M.M. Hasan, A. Islam, O. Miotto,

373

R. Amato, B. MacInnis, J. Stalker, D.P.Kwiatkowski, Z. Bozdech, A. Jeeyapant, P.Y. Cheah,

374

T. Sakulthaew, J. Chalk, B. Intharabut, K. Silamut, S.J. Lee, B. Vihokhern, C. Kunasol, M.

375

Imwong, J. Tarning, W.J. Taylor, S. Yeung, C.J. Woodrow, J.A. Flegg, D. Das, J. Smith, M.

376

Venkatesan, C.V. Plowe, K. Stepniewska, P.J. Guerin, A.M. Dondorp, N.P. Day, N.J. White,

377

Spread of Artemisinin resistance in Plasmodium falciparum malaria, N. Engl. J. Med. 371

378

(2014) 411-423. doi: 10.1056/NEJMoa131498.

379

[3] D. Hill, J.P. Dubey, Toxoplasma gondii: transmission, diagnosis and prevention, Clin.

380

Microbiol. Infect. 8 (2002) 634-640. https://doi.org/10.1046/j.1469-0691.2002.00485.x.

381

[4] E. Petersen, D.R. Schmidt, Sulfadiazine and pyrimethamine in the postnatal treatment of

382

congenital toxoplasmosis: what are the options?, Expert. Rev. Anti. Infect. Ther. 1 (2003) 175-

383

182

384

[5] C. Doliwa, S. Escotte-Binet, D. Aubert, F. Velard, A. Schmid, R. Geers, I. Villena,

385

Induction of sulfadiazine resistance in vitro in Toxoplasma gondii, Exp. Parasitol. 133 (2013)

386

131-136. http://doi.org/10.1016/j.exppara.2012.11.019.

C. Nguon, S. Sovannaroth, S.

K. Chotivanich, K. Chutasmit, C. Suchatsoonthorn, R.

17

387

[6] B. Heinemann, M.A. Kaplan, R.D. Muir, I.R. Hooper, Amphomycin, a new antibiotic,

388

Antibiot. Chemother. 3 (1953) 1239 –1242.

389

[7] L.A. Kominek, Biosynthesis of novobiocin by Streptomyces niveus, Antimicrob. Agents.

390

Chemother. 1 (1972) 123–134. Doi:10.1128/AAC.1.2.123.

391

[8] C. Hohmann, K. Schneider, C. Bruntner, E. Irran, G. Nicholson, A.T. Bull, A.L. Jones, R.

392

Brown, J.E. Stach, M. Goodfellow, W. Beil, M. Kramer, J.F. Imhoff, R.D. Sussmuth, H.P.

393

Fiedler, Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea

394

strain

395

http://dx.doi.org/10 .1038/ja.2008.24.

396

[9] B.K. Hwang, S.W. Lim, B.S. Kim, J.Y. Lee, S.S. Moon, Isolation and in vivo and in vitro

397

antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus,

398

Appl. Environ. Microbiol. 67 (2001) 3739–3745. http://dx.doi.org/10.1128/AEM.67.8.3739-

399

3745.2001.

400

[10] R.W. Burg, B.M. Miller, E.E. Baker, J. Birnbaum, S.A. Currie, R. Hartman, Y.L. Kong,

401

R.L. Monaghan, G. Olson, I. Putter, J.B. Tunac, H. Wallick, E.O. Stapley, R. Oiwa, S. Omura,

402

Avermectins, new family of potent anthelmintic agents: producing organism and fermentation,

403

Antimicrob. Agents. Chemother. 15 (1979) 361–367. http://dx.doi.org/10.1128/AAC.15.3 .361.

404

[11] S. Omura, Y. Iwai, Y. Takahashi, N. Sadakane, A. Nakagawa, Herbimycin, a new

405

antibiotic produced by a strain Streptomyces, J. Antibiot. 32 (1979) 255-261.

406

https://doi.org/10.7164/antibiotics.32.255.

407

[12] S. Ganesan, S. Raja, P. Sampathkumar, K. Sivakumar, T. Thangaradjou, Isolation and

408

screening of α-glucosidase enzyme inhibitor producing marine actinobacteria, Afr. J. Microbiol.

409

Res. 5 (2011) 3437–3445. Doi: 10.5897/AJMR11.583.

Streptomyces

sp.

NTK

937,

J.

18

Antibiot.

62

(2009)

99

–104.

410

[13] E.A. Barka, P. Vatsa, L. Sanchez, N. Gaveau-Vaillant, C. Jacquard, H-P. Klenk, C.

411

Clément, Y. Ouhdouch, G.P.Van Wezel, Taxonomy, physiology, and natural products of

412

Actinobacteria,

413

doi:10.1128/MMBR.00019-15.

414

[14] A.S. Anderson, E.M.H. Wellington, The taxonomy of Streptomyces and related genera,

415

Int.J.Syst. Evol.Microbiol. 51 (2001) 797-814. DOI: 10.1099/00207713-51-3-797.

416

[15] J. Berdy, Bioactive Microbial Metabolites. J. Antibiot. 58 (2005) 1-26.

417

[16] T. Baljinova, Unique Microbiota of Mongolia. Journal Mongolia today: science, culture,

418

environment and development, Routledge, 2015, pp 196-198.

419

[17] A. Ara, D. Daram, T. Baljinova, H. Yamamura, W.N. Hozzein, M.A. Bakir, M. Suto, K.

420

Ando, Isolation, classification, phylogenetic analysis and scanning electron microscopy of

421

halophilic, halotolerant and alkaliphilic actinomycetes isolated from hypersaline soil, Afr. J.

422

Microbiol. Res. 7 (2013) 298-308. https://doi.org/10.5897/AJMR12.498.

423

[18] Zh. Norovsuren, G.V. Oborotov, G.M. Zenova, R.A. Aliev, D.G. Zvyagintsev,

424

Haloalkaliphilic actinomycetes in soils of Mongolian desert steppes, Biol. Bull. 34 (2007) 501-

425

507. https://doi.org/10.1134/S1062359007040140.

426

[19] D.J. Lane, 16S/23S rRNA sequencing, Nucleic acid techniques in bacterial systematics,

427

E. Stackbrandt and M. Goodfellow, (eds) New York, 1991.

428

[20] S. Kumar, G. Stecher, M. Li, C. Knyanz, K. Tamura, MEGA X: Molecular Evaluationary

429

Genetics Analysis across computing Platforms, Mol. Biol. Evol. 35 (2018) 1547-1549.

430

https://doi:10.1093/molbev/msy096.

Microbiol.

Mol.

Biol.

19

Rev.

80

(2016)

1–43.

http://

431

[21] K. Tamura, M. Nei, Estimation of the number of nucleotide substitutions in the control

432

region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol. 10 (1993) 512-

433

526. https://doi.org/10.1093/oxfordjournals.molbev.a040023.

434

[22] Y. Nishikawa, X. Xuan, L. Makala, O. Vielemeyer, K.A. Joiner, H. Nagasawa,

435

Characterization of Toxoplasma gondii engineered to express mouse interferon-gamma, Int. J.

436

Parasitol. 33 (2003) 1525-1535. https://doi.org/10.1016/S0020-7519(03)00204-2.

437

[23] A. Leesombun, S. Boonmasawai, N. Shimoda, Y. Nishikawa, Effects of extracts from

438

Thai Piperaceae plants against infection with Toxoplasma gondii, PLoS One 11 (2016) 1-13.

439

https://doi.org/10.1371/journal.pone.0156116.

440

[24] A. Kimura, H. Nishikawa, N. Nomura, J. Mitsuyama, S. Fukumoto, N. Inoue, S. Kawazu,

441

In vitro and in vivo antimalarial activities of T-2307, a novel arylamidine, Antimicrob. Agents.

442

Chemother. 56 (2012) 2191-2193. https://doi.org/10.1128/AAC.05856-11.

443

[25] M. Smilkstein, N. Sriwilaijaroen, J.X. Kelly, P. Wilairat, M. Riscoe, Simple and

444

inexpensive fluorescence-based technique for high-throughput antimalarial drug screening,

445

Antimicrob. Agents. Chemother. 48 (2004) 1803-1806. Doi: 10.1128/AAC.48.5.1803-

446

1806.2004.

447

[26] M. Lahlou, Screening of natural products for drug discovery, Expert. Opin. Drug. Discov.

448

2 (2007) 697-705. https://doi.org/10.1517/17460441.2.5.697.

449

[27] N.M. Zin, M.S. Baba, A.H. Zainal-Abidin, J. Latip, N.W. Mazlan, R. Edrada-Ebel,

450

Gancidin W, a potential low-toxicity antimalarial agent isolated from an ensophytic

451

Streptomyces

452

363. https://doi.org/10.2147/DDDT.S121283.

SUK10,

Drug.

Des.

Devel.

20

Ther.

11

(2017)

351-

453

[28] R.P. Maskey, E. Helmke, O. Kayser, H.H. Fiebig, A. Maier, H. laatsch, Anti-cancer and

454

antibacterial trioxacarcins with high anti-malaria activity from a marine Streptomycete and

455

their

456

779. https://doi.org/10.7164/antibiotics.57.771.

457

[29] M. Isaka, A. Jaturapat, J. Kramyu, M. Tanticharoen, Y. Thebtaraninth, Potent in vitro

458

Antimalarial activity of Metacycloprodigiosin isolated from Streptomyces spectabilis BCC

459

4785,

460

https://doi.org/10.1128/AAC.46.4.1112-1113.2002.

461

[30] U.F. Castillo, G.A. Strobel, E.J. Ford, W.M. Hess, H. Porter, J.B. Jensen, H. Albert, R.

462

Robison, M.A.M. Condron, D.B. Teplow, D. Stevens, D. Yaver, Munumbicins, wide-spectrum

463

antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans,

464

Microbiol. 148 (2002) 2675-2685. doi: 10.1099/00221287-148-9-2675.

465

[31] S.M. Pimentel-Elardo, S. Kozytska, T.S. Bugni, Ch.M. Ireland, H. Moll, U. Hentschel,

466

Anti-parasitic compounds from Streptomyces sp. strains isolated from Mediterranean sponges,

467

Mar. Drugs. 8 (2010) 373-380. https://doi.org/10.3390/md8020373.

468

[32] S. Omura, H. Ikeda, C. Kitao, Isolation and properties of spiramycin I 3-Hydroxyl acylase

469

from

470

https://doi.org/10.1093/oxfordjournals.jbchem.a132696.

471

[33] D. Serranti, D. Buonsenso, P. Valentini, Congenital toxoplasmosis treatment, Eur. Rev.

472

Med. Pharmacol. Sci. 15 (2011) 193-198.

473

[34] C. Fu, L. Keller, A. Bauer, M. Brönstrup, A. Froidbise, P. Hammann, J. Herrmann, G.

474

Mondesert, M. Kurz, M. Schiell, D. Schummer, L. Toti, J. Wink, R. Müller, Biosynthetic

absolute

Antimicrob.

Streptomyces

stereochemistry,

Agents.

ambofaciens,

J.

Antibiot.

Chemother.

J.

21

Biochem.

57

46

(2004)

(2002)

86

(1979)

771-

1112-1113.

1753-1758.

475

studies of telomycin reveal new lipopeptides with enhanced activity, J. Am. Chem. Soc. 137

476

(2015) 7692-7705. https://pubs.acs.org/doi/10.1021/jacs.5b01794.

477

[35] H.J. Yang, X.Z. Huang, Z.L. Zhang, C.X. Wang, J. Zhou, K. Huang, J.M. Zhou, W. Zheng,

478

Two novel amphomycin analogues from Streptomyces canus strain FIM-0916, Nat. Prod. Res.

479

28 (2014) 861-867. Doi:10.1080/14786419.2014.886210.

480

[36] A.A. Abou-Zeid, H.M. Salem, A.I. Essa, Factors influencing the production of kanamycin

481

by

482

https://doi.org/10.1002/jobm.19710110602.

483

[37] Y.I. Zhang, S. Li, D.H. Jiang, L.C. Kong, P.H. Zhang, J.D. Xu, Antifungal activities of

484

metabolites produced by a termite-associated Streptomyces canus BYB02, J. Agric. Food.

485

Chem. 61 (2013) 1521-1524. doi: 10.1021/jf305210u.

486

[38] H. Tanaka, Y. Iwai, R. Oiwa, S. Shinohara, S. Shimuzu, T. Oka, S. Omura, Studies in

487

bacterial cell wall inhibitors: II. Inhibition of peptidoglycan synthesis in vivo and in vitro by

488

amphomycin, Biochem. Biophys. Acta. 497 (1977) 633-640. https://doi.org/10.1016/0304-

489

4165(77)90283-5.

490

[39] G. Carr, D.E. Williams, A.R. Díaz-Marrero, B.O. Patrick, H. Bottriell, A.D. Balgi, E.

491

Donohue, M. Roberge, R.J. Anderson, Bafilomycins produced in culture by Streptomyces spp.

492

isolated from marine habitats are potent inhibitors of autophagy, J. Nat. Prod. 73(2010) 422-

493

427. Doi:10.1021/np900632r.

494

[40] Y. Hu, J.B. MacMillian, A new peptide isolated from marine derived Streptomyces

495

bacillaris, Nat. Prod. Commun. 7 (2010) 211-214.

Streptomyces

canus,

J.

Basic.

22

Microbiol.

11

(1971)

469-473.

496

[41] K.F. Nielsen, M. Månsson, C. Rank, J.C. Frisvad, T.O. Larsen, Dereplication of Microbial

497

Natural Products by LC-DAD-TOFMS, J. Nat. Prod. 74 (2011) 2338–2348. Doi:

498

10.1021/np200254t.

499

[42] L.S. 3rd Pierson, E.A. Pierson, Metabolism and function of phenazines in bacteria: impacts

500

on the behavior of bacteria in the environment and biotechnological processes, Appl. Microbiol.

501

Biotechnol. 86 (2010) 1659-1670. Doi:10.1007/s00253-010-2509-3.

502

[43] T. Morohoshi, W-Z. Wang, T. Suto, Y. Saito, S. Ito, N. Someya, T. Ikeda, Phenazine

503

antibiotic production and antifungal activity are regulated by multiple quorum-sensing systems

504

in Pseudomonas chlororaphis subsp. aurantiaca StFRB508, J. Biosci. Bioeng. 116 (2013) 580-

505

584. https://doi.org/10.1016/j.jbiosc.2013.04.022.

506

[44] A. Cimmino, A. Andolfi, A. Evidente, Phenazine as an Anticancer Agent. In:

507

Chincholkar S, Thomashow L. (eds) Microbial Phenazines. Springer, Berlin, Heidelberg,

508

2013, pp 217-243 https://doi.org/10.1007/978-3-642-40573-0_11.

509

[45] N.B. De Souza, I.M. De Andrade, P.E. Carneiro, G.A. Jardim, I.M. De Melo, E.N. De

510

Silva Júnior, A.U. Krettli, Blood shizonticidal activities of phenazines and naphthoquinoidal

511

compounds against Plasmodium falciparum in vitro and in mice malaria studies, Mem. Inst.

512

Oswaldo. Cruz. 109 (2014) 546-552. http://dx.doi.org/10.1590/0074-0276130603.

513

[46] H. Hussain, S. Specht, S.R. Sarite, M. Saeftel, A. Hoerauf, B. Schulz, K. Krohn, A new

514

class of phenazines with activity against a chloroquine resistant Plasmodium falciparum strain

515

and

516

https://pubs.acs.org/doi/abs/10.1021/jm200302d.

antimicrobial

Activity,

J.

Med.

23

Chem.

54

(2011)

4913-4917.

517

[47] M.R. Rane, P.D. Sarode, B.L. Chaudhari, S.B. Chincholkar, Detection, isolation and

518

identification of phenazine-1-carboxylic acid produced by biocontrol strains of Psedomonas

519

auruginosa, J. Sci. Ind. Res. 66 (2007) 627-631.

520

[48] X. Zhao, Z. Chen, L. Yu, D. Hu, B. Song, Investigating the antifungal activity and

521

mechanism of microbial pesticide Shenqinmycin against Phoma sp, Pestic. Biochem. Physiol.

522

147 (2018) 46-50. https://doi.org/10.1016/j.pestbp.2017.08.014.

523

[49] A. Abraham, S. Philip, M.K. Jacob, S.P. Narayanan, C.K. Jacob, J. Kochupurackal,

524

Phenazine-1-carboxylic acid mediated anti-oomycete activity of the endophytic Alcaligenes

525

sp.

526

https://doi.org/10.1016/j.micres.2014.06.002.

527

[50] A.S. Simionato, M.O.P. Navarro, M.L.A. De Jesus, A.R. Barazetti, C.S. Da Silva, G.C.

528

Simoes, M.I. Balbi-Pena, J.C.P. De Mello, L.A. Panagio, G. De Almeida, G. Andrad, A.G. De

529

Oliveira, The effect of phenazine-1-carboxylic acid on Mycelial growth of botrytis cinerea

530

produced by Pseudomonas aeruginosa LV strain, Front. Microbiol. 8 (2017) 1-9.

531

https://doi.org/10.3389/fmicb.2017.01102.

532

[51] V. Karuppiah, K. Alagappan, K. Sivakumar, L. Kannan, Phenazine-1-carboxylic acid-

533

induced programmed cell death in human prostate cancer cells is mediated by reactive oxygen

534

species generation and mitochondrial-related apoptotic pathway, J. App. Biomed. 14 (2016)

535

199-209. https://doi.org/10.1016/j.jab.2016.01.003.

536

[52] N.M.I. Sarmin, G.Y.A. Tan, C.M.M. Franco, R. Edrada-Ebel, J. Latip, N.M. Zin,

537

Streptomyces kebangsaanensis sp. nov., an endophytic actinomycete isolated from an

538

ethnomedicinal plant, which produces phenazine-1-carboxylic acid, Int. J. Syst. Evol.

539

Microbiol. 63 (2013) 3733-3738. doi: 10.1099/ijs.0.047878-0.

EIL-2

against

Phytophthora

meadii,

24

Microbial.

Res.

170

(2015)

229-234.

540

[53] K. Gebhardt, J. Schimana, P. Krastel, K. Dettner, J. Rheinheimer, A. Zeeck, H-P. Fiedler,

541

Endophenazines A-D, new phenazine antibiotic from the arthropod associated endosymbiont

542

Streptomyces anulatus. I. Taxonomy, fermentation, isolation and biological activities, J.

543

Antibiot. 55 (2002) 794-800. https://doi.org/10.7164/antibiotics.55.794.

544

[53] S. Xu, X. Pan, J. Luo, J. Wu, Z. Zhou, X. Liang, Y. He, M. Zhou, Effects of phenazine-1-

545

carboxylic acid on the biology of the plant-pathogenic bacterium Xanthomonas oryzae pv.

546

Oryzae,

547

https://doi.org/10.1016/j.pestbp.2014.10.006.

Pestic.

Biochem.

Physiol.

548

25

117

(2015)

39-46.

549

Figure legends

550

Fig. 1. Phylogenetic tree for the N25, N6, N12, N18 isolates based on 16S rRNA gene

551

sequences. The maximum-likelihood method based on the Tamura-Nei model was used.

552

Bootstrap values are based on 1,000 replicates. The 16S rRNA gene sequence from

553

Actinomadura hibisca (NR_042031) was used as the outgroup.

554

555

Fig. 2. (A) Structure of 1-phenazinecarboxylic acid. (B) LC-HRMS analysis of the active

556

compound in F8. The upper plot shows the total ion chromatogram (TIC), total scan

557

photodiode array chromatogram and extracted ion chromatogram from m/z 225.0661±5

558

ppm (m/z 225.0650-225.0672) (shown in order from the top). The middle and lower plots

559

represent the ultraviolet (UV) spectrum and mass spectrum, respectively, each with a

560

retention time (Rt) of 2.95 min.

561

562

Fig. 3. (A) Structure of 1-phenazinecarboxylic acid-methyl ester. (B) LC-HRMS analysis

563

of the active compound in F9. The upper plot shows the total ion chromatogram (TIC),

564

total scan photodiode array chromatogram and extracted ion chromatogram from m/z

565

239.0819±5 ppm (m/z 239.0807-239.0831) (shown in order from the top). The middle and

566

lower plots represent the ultraviolet (UV) spectrum and mass spectrum, respectively, each

567

with a retention time (Rt) of 3.09 min.

568

569

Fig. 4. (A) Anti-Toxoplasma activity of phenazine-1carboxylic acid (PCA) based on the T.

570

gondii RH-GFP strain. The half maximal inhibition concentration (IC50) was 55.5 µg/ml.

26

571

(B) Antimalarial activity of PCA based on the P. falciparum 3D7 strain. The IC50 value

572

was 6.4 µg/ml. Data represent the mean values ± SD for three independent experiments.

573

27

Table 1.

Anti-Toxoplasma and antimalarial activities of antibiotics derived from Streptomyces species.

Antibiotics

Actinomycetes

IC50 for T.

IC50 for P.

falciparum

gondii

IC50 for HFF

cells

(Selectivity index)

Streptomyces

Amphomycin [7]

>100 µM

9.3 µM

>100 µM

>100 µM

>100 µM

11.5 µM

>100 µM

>100 µM

1.2 µM

>100 µM

182.7 µM

>100 µM

>100 µM

34.1 nM (1.0)

33.1 nM

canus

Streptomyces

Kanamycin [35]

canus

Resistomycin

Streptomyces

[36]

canus

Tylosine

Streptomyces

phosphate [14]

cirratus

Bafilomycin A1

Streptomyces

[39]

bacillaris

All IC50 values were calculated based on three independent experiments.

Table 2

Anti-Toxoplasma and antimalarial activities of crude extracts from four actinomycetes (N6,

N12, N18, N25) isolates.

IC50 for T. gondii

IC50 for P. falciparum

(Selectivity index)

(Selectivity index)

N6

>100 µg/ml

>100 µg/ml

>100 µg/ml

N12

>100 µg/ml

>100 µg/ml

>100 µg/ml

N18

91.8 ng/ml (3.4)

156.9 ng/ml (2.0)

316 ng/ml

N25

19.2 µg/ml

4.9 µg/ml

>100 µg/ml

Actinomycetes

All IC50 values were calculated based on three independent experiments.

IC50 for HFF cells

Table 3

Anti-Toxoplasma and antimalarial activities of the TLC fractions from Streptomyces canus

(N25).

IC50 for T. gondii

IC50 for P. falciparum

(Selectivity index)

(Selectivity index)

>50 µg/ml

>50 µg/ml

>100 µg/ml

>50 µg/ml

>50 µg/ml

>100 µg/ml

>50 µg/ml

>50 µg/ml

>100 µg/ml

>50 µg/ml

>50 µg/ml

>100 µg/ml

>50 µg/ml

>50 µg/ml

>100 µg/ml

>50 µg/ml

>50 µg/ml

>100 µg/ml

>50 µg/ml

>50 µg/ml

>100 µg/ml

2.6 µg/ml (53.4)

4.8 µg/ml (28.9)

138.9 µg/ml

122.2 ng/ml (239.7)

163.8 ng/ml (178.8)

29.3 µg/ml

10

>50 µg/ml

18.4 µg/ml

>100 µg/ml

Fractions

IC50 for HFF cells

>50 µg/ml: No activity at 50 µg/ml; the highest dose tested.

The IC50 values of fractions 8, 9, and 10 were calculated based on three independent

experiments.

Table S1

Hemolysis rate (%)

Drugs

Concentrations Hemolysis rate (%)

Amphomycin

100 µM

0.41

Bafilomycin A1

100 µM

7.78

Tylosine phosphate

100 µM

N.D.

Crude extract N18

100 µg/ml

3.01

Crude extract N25

100 µg/ml

0.41

Fraction 8

100 µg/ml

N.D.

Fraction 9

100 µg/ml

0.1

Fraction 10

100 µg/ml

6.02

PCA

100 µg/ml

N.D.

N.D.: Below detection limit

PBS and RBC lysis buffer (0.83% NH4Cl; 0.01 M Tris-HCl, pH 7.2) are used for negative and

positive controls, respectively.

Procedure: Hemolysis assay was performed as reported previously with minor modification

(Evans et al., 2013). Each drug, extract and fraction was prepared in PBS as designed

concentration and then 3% of erythrocyte suspension in PBS was added. The sample were

incubated at 37ºC for 3 h and then the mixtures were centrifuged at 1,300 × g for 5 min. A 100

µl of supernatant was transferred into 96-well plate. The absorbance values of supernatants

were determined with microplate reader at 540 nm. The hemolysis rate of erythrocytes was

calculated by using the following formula.

Hemolysis rate = (A sample  A negative control)/(B positive control  B negative control) 100%

Reference: B.C. Evans, C.E. Nelson, S. S. Yu, K.R. Beavers, A.J. Kim, H.LI, H.M. Nelson,

T.D. Giorgio, C.L. Duvall, Ex vivo red blood cell hemolysis assay for the evaluation of pHresponsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs, J Vis Exp.

73 (2013), e50166, doi: 10.3791/50166.

...

参考文献をもっと見る