リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Three-dimensional finite temperature Z2 gauge theory with tensor network scheme」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Three-dimensional finite temperature Z2 gauge theory with tensor network scheme

藏増, 嘉伸 Yoshimura, Yusuke 筑波大学 DOI:10.1007/JHEP08(2019)023

2020.08.25

概要

We apply a tensor network scheme to finite temperature Z2 gauge theory in 2+1 dimensions. Finite size scaling analysis with the spatial extension up to Nσ = 4096 at the temporal extension of Nτ = 2, 3, 5 allows us to determine the transition temperature and the critical exponent ν at high level of precision, which shows the consistency with the Svetitsky-Yaffe conjecture.

この論文で使われている画像

参考文献

[1] T. Nishino and K. Okunishi, Corner transfer matrix renormalization group method, J. Phys.

Soc. Jpn. 65 (1996) 891.

[2] N. Maeshima, Y. Hieida, Y. Akutsu, T. Nishino and K. Okunishi, Vertical density matrix

algorithm: a higher dimensional numerical renormalization scheme based on the tensor

product state ansatz, Phys. Rev. E 64 (2001) 016705 [cond-mat/0101360] [INSPIRE].

[3] M. Levin and C.P. Nave, Tensor renormalization group approach to 2D classical lattice

models, Phys. Rev. Lett. 99 (2007) 120601 [cond-mat/0611687] [INSPIRE].

[4] Z.-C. Gu and X.-G. Wen, Tensor-entanglement-filtering renormalization approach and

symmetry protected topological order, Phys. Rev. B 80 (2009) 155131 [arXiv:0903.1069]

[INSPIRE].

[5] Y. Shimizu, Tensor renormalization group approach to a lattice boson model, Mod. Phys.

Lett. A 27 (2012) 1250035 [INSPIRE].

[6] Y. Shimizu and Y. Kuramashi, Grassmann tensor renormalization group approach to

one-flavor lattice Schwinger model, Phys. Rev. D 90 (2014) 014508 [arXiv:1403.0642]

[INSPIRE].

[7] Z.-C. Gu, F. Verstraete and X.-G. Wen, Grassmann tensor network states and its

renormalization for strongly correlated fermionic and bosonic states, arXiv:1004.2563

[INSPIRE].

– 11 –

JHEP08(2019)023

We have applied the tensor network scheme to a study of 3D finite temperature Z 2 gauge

theory. Its efficiency is demonstrated by a numerical study of the critical properties of

the 3D Z2 gauge theory. The tensor network scheme enables us to make a large scale of

finite size scaling analysis with the wide range of Nσ thanks to the ln V dependence of the

computational cost, which allows us a precise and reliable estimation of the critical point

and the critical exponent at the thermodynamic limit. This is the first successful application

of the tensor network scheme to one of the simplest 3D lattice gauge theories. Next step

may be the extension of this approach to the gauge theories with continuous groups.

[8] Z.-C. Gu, Efficient simulation of Grassmann tensor product states, Phys. Rev. B 88 (2013)

115139 [arXiv:1109.4470] [INSPIRE].

[9] Y. Shimizu and Y. Kuramashi, Critical behavior of the lattice Schwinger model with a

topological term at θ = π using the Grassmann tensor renormalization group, Phys. Rev. D

90 (2014) 074503 [arXiv:1408.0897] [INSPIRE].

[10] Y. Shimizu and Y. Kuramashi, Berezinskii-Kosterlitz-Thouless transition in lattice Schwinger

model with one flavor of Wilson fermion, Phys. Rev. D 97 (2018) 034502

[arXiv:1712.07808] [INSPIRE].

[12] D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda and Y. Yoshimura, Tensor

network formulation for two-dimensional lattice N = 1 Wess-Zumino model, JHEP 03

(2018) 141 [arXiv:1801.04183] [INSPIRE].

[13] R. Sakai, S. Takeda and Y. Yoshimura, Higher order tensor renormalization group for

relativistic fermion systems, Prog. Theor. Exp. Phys. 2017 (2017) 063B07

[arXiv:1705.07764] [INSPIRE].

[14] Y. Yoshimura, Y. Kuramashi, Y. Nakamura, S. Takeda and R. Sakai, Calculation of

fermionic Green functions with Grassmann higher-order tensor renormalization group, Phys.

Rev. D 97 (2018) 054511 [arXiv:1711.08121] [INSPIRE].

[15] Y. Liu et al., Exact blocking formulas for spin and gauge models, Phys. Rev. D 88 (2013)

056005 [arXiv:1307.6543] [INSPIRE].

[16] B. Dittrich, F.C. Eckert and M. Martin-Benito, Coarse graining methods for spin net and

spin foam models, New J. Phys. 14 (2012) 035008 [arXiv:1109.4927] [INSPIRE].

[17] B. Dittrich and F.C. Eckert, Towards computational insights into the large-scale structure of

spin foams, J. Phys. Conf. Ser. 360 (2012) 012004 [arXiv:1111.0967] [INSPIRE].

[18] B. Dittrich, S. Mizera and S. Steinhaus, Decorated tensor network renormalization for lattice

gauge theories and spin foam models, New J. Phys. 18 (2016) 053009 [arXiv:1409.2407]

[INSPIRE].

[19] M. Caselle and M. Hasenbusch, Deconfinement transition and dimensional crossover in the

3D gauge Ising model, Nucl. Phys. B 470 (1996) 435 [hep-lat/9511015] [INSPIRE].

[20] B. Svetitsky and L.G. Yaffe, Critical behavior at finite temperature confinement transitions,

Nucl. Phys. B 210 (1982) 423 [INSPIRE].

[21] Z.Y. Xie, J. Chen, M.P. Qin, J.W. Zhu, L.P. Yang and T. Xiang, Coarse-graining

renormalization by higher-order singular value decomposition, Phys. Rev. B 86 (2012)

045139.

– 12 –

JHEP08(2019)023

[11] S. Takeda and Y. Yoshimura, Grassmann tensor renormalization group for the one-flavor

lattice Gross-Neveu model with finite chemical potential, Prog. Theor. Exp. Phys. 2015

(2015) 043B01.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る