リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Three‐Dimensional Closure of Field‐Aligned Currents in the Polar Ionosphere」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Three‐Dimensional Closure of Field‐Aligned Currents in the Polar Ionosphere

Yano, Yuto Ebihara, Yusuke 京都大学 DOI:10.1029/2021JA029421

2021.09

概要

Using a simplified three-dimensional Hall-magnetohydrodynamics simulation, we investigated the current closure of field-aligned currents (FACs) in the polar ionosphere. Ion-neutral collision was taken into consideration. To excite a pair of FACs, an electric field perturbation is applied to the upper boundary of the simulation box. The flow shear propagated downward accompanied with the FACs. When the electron density was initially uniform, most of the FACs are connected with the Pedersen current due to electrostatic processes. Some of them are connected with the Hall current due to inductive processes. When the density was initially enhanced in a longitudinally elongated region (high-density band), overflow of the Hall current takes place near the edge of the high-density band. Additionally, localized FACs appear to bridge between the Pedersen current layer (high altitude) and the Hall current layer (low altitude). The formation of the additional FACs is closely associated with the field-aligned gradient of ∇∙E, where E is the electric field. We compared the current lines with those evaluated by the traditional thin-layer assumption. The current closure obtained by the thin-layer assumption is fully different from that obtained by the three-dimensional model. In the full three-dimensional simulation, a current line flowing in the Hall layer can pass underneath the current flowing in the Pedersen layer. Such “intersection” is not allowed in the thin-layer assumption. We believe that the three-dimensional model offers advantages for fully understanding the closure of the FACs together with the current closure on the magnetospheric side.

この論文で使われている画像

参考文献

Akasofu, S. I., Kamide, Y., Kan, J. R., Lee, L. C., & Ahn, B. H. (1981). Power transmission from the solar wind-magnetosphere dynamo to

the magnetosphere and to the ionosphere: Analysis of the IMS Alaska meridian chain data. Planetary and Space Science, 29(7), 721–730.

https://doi.org/10.1016/0032-0633(81)90042-8

Baumjohann, W., Pelunen, R. J., Opgenoorth, H. J., & Nielsen, E. (1981). Joint two-dimensional observations of ground magnetic and

ionospheric electric fields associated with auroral zone currents: Current systems associated with local auroral break-ups. Planetary and

Space Science, 29(4), 431–447. https://doi.org/10.1016/0032-0633(81)90087-8

Baumjohann, W., & Treumann, R. A. (1996). Basic space plasma physics. Imperial College Press. https://doi.org/10.1142/p015

Boström, R. (1964). A model of the auroral electrojets. Journal of Geophysical Research, 69(23), 4983–4999. https://doi.org/10.1029/

JZ069i023p04983

Dreher, J. (1997). On the self-consistent description of dynamic magnetosphere-ionosphere coupling phenomena with resolved ionosphere. Journal of Geophysical Research, 102(A1), 85–94. https://doi.org/10.1029/96JA02800

Ebihara, Y., & Tanaka, T. (2015a). Substorm simulation: Formation of westward traveling surge. Journal of Geophysical Research: Space

Physics, 120(12), 10466–10484. https://doi.org/10.1002/2015JA021697

Ebihara, Y., & Tanaka, T. (2015b). Substorm simulation: Insight into the mechanisms of initial brightening. Journal of Geophysical Research: Space Physics, 120(9), 7270–7288. https://doi.org/10.1002/2015JA021516

Ebihara, Y., & Tanaka, T. (2018). Why does substorm-associated auroral surge travel westward? Plasma Physics and Controlled Fusion,

60(1). https://doi.org/10.1088/1361-6587/aa89fd

Ebihara, Y., Tanaka, T., & Kikuchi, T. (2014). Counter equatorial electrojet and overshielding after substorm onset: Global MHD simulation

study. Journal of Geophysical Research: Space Physics, 119(9), 7281–7296. https://doi.org/10.1002/2014JA020065

Friis-Christensen, E., McHenry, M. A., Clauer, C. R., & Vennerstrøm, S. (1988). Ionospheric traveling convection vortices observed near

the polar cleft: A triggered response to sudden changes in the solar wind. Geophysical Research Letters, 15(3), 253–256. https://doi.

org/10.1029/GL015i003p00253

Fujii, R., Amm, O., Yoshikawa, A., Ieda, A., & Vanhamäki, H. (2011). Reformulation and energy flow of the Cowling channel. Journal of

Geophysical Research, 116(A2), A02305. https://doi.org/10.1029/2010JA015989

Fujii, R., Hoffman, R. A., Anderson, P. C., Craven, J. D., Sugiura, M., Frank, L. A., & Maynard, N. C. (1994). Electrodynamic parameters

in the nighttime sector during auroral substorms. Journal of Geophysical Research, 99(A4), 6093. https://doi.org/10.1029/93JA02210

Fukuda, Y., Hirahara, M., Asamura, K., Sakanoi, T., Miyoshi, Y., Takada, T., et al. (2014). Electron properties in inverted-V structures

and their vicinities based on Reimei observations. Journal of Geophysical Research: Space Physics, 119, 3650–3663. https://doi.

org/10.1002/2013JA018938

Glassmeier, K.-H., & Heppner, C. (1992). Traveling magnetospheric convection twin vortices: Another case study, global characteristics,

and a model. Journal of Geophysical Research, 97(A4), 3977–3992. https://doi.org/10.1029/91ja02464

Goldstein, J., Spiro, R. W., Reiff, P. H., Wolf, R. A., Sandel, B. R., Freeman, J. W., & Lambour, R. L. (2002). IMF-driven overshielding electric field and the origin of the plasmaspheric shoulder of May 24, 2000. Geophysical Research Letters, 29(16), 66-1–66-4. https://doi.

org/10.1029/2001gl014534

Hallinan, T. J., Kimball, J., Stenbaek-Nielsen, H. C., & Deehr, C. S. (1997). Spectroscopic evidence for suprathermal electrons in enhanced

auroras. Journal of Geophysical Research, 102(A4), 7501–7508. https://doi.org/10.1029/97ja00197

Hallinan, T. J., Stenbaek-Nielsen, H. C., & Deehr, C. S. (1985). Enhanced aurora. Journal of Geophysical Research, 90(A9), 8461–8475.

https://doi.org/10.1029/JA090iA09p08461

Hughes, T. J., & Rostoker, G. (1977). Current flow in the magnetosphere and ionosphere during periods of moderate activity. Journal of

Geophysical Research, 82(16), 2271–2282. https://doi.org/10.1029/JA082i016p02271

Inhester, B., Baumjohann, W., Greenwald, R. A., & Nielsen, E. (1981). Joint two-dimensional observations of ground magnetic and ionospheric electric fields associated with auroral zone currents. III—Auroral zone currents during the passage of a westward travelling

surge. Journal of Geophysics, 49, 155–162.

Kamide, Y., & Akasofu, S. I. (1975). The auroral electrojet and global auroral features. Journal of Geophysical Research, 80(25), 3585–3602.

https://doi.org/10.1029/ja080i025p03585

Kan, J. R., Williams, R. L., & Akasofu, S. I. (1984). A mechanism for the westward traveling surge during substorms. Journal of Geophysical

Research, 89(A4), 2211–2216. https://doi.org/10.1029/JA089iA04p02211

Kikuchi, T., Ebihara, Y., Hashimoto, K. K., Kataoka, R., Hori, T., Watari, S., & Nishitani, N. (2010). Penetration of the convection and

overshielding electric fields to the equatorial ionosphere during a quasiperiodic DP 2 geomagnetic fluctuation event. Journal of Geophysical Research, 115, A05209. https://doi.org/10.1029/2008ja013948

Kisabeth, J. L., & Rostoker, G. (1973). Current flow in auroral loops and surges inferred from ground-based magnetic observations. Journal

of Geophysical Research, 78(25), 5573–5584. https://doi.org/10.1029/JA078i025p05573

Lee, D. H., & Lysak, R. L. (1990). Effects of azimuthal asymmetry on ULF waves in the dipole magnetosphere. Geophysical Research Letters,

17(1), 53–56. https://doi.org/10.1029/GL017i001p00053

Lysak, R. L. (1997). Propagation of Alfvén waves through the ionosphere. Physics and Chemistry of the Earth, 22(7–8), 757–766.

https://doi.org/10.1016/S0079-1946(97)00208-5

14 of 15

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Journal of Geophysical Research: Space Physics

10.1029/2021JA029421

Lysak, R. L. (1999). Propagation of Alfvén waves through the ionosphere: Dependence on ionospheric parameters. Journal of Geophysical

Research, 104(A5), 10017–10030. https://doi.org/10.1029/1999JA900024

Lysak, R. L. (2004). Magnetosphere-ionosphere coupling by Alfvén waves at midlatitudes. Journal of Geophysical Research, 109(A7),

A07201. https://doi.org/10.1029/2004JA010454

Lysak, R. L., Waters, C. L., & Sciffer, M. D. (2013). Modeling of the ionospheric Alfvén resonator in dipolar geometry. Journal of Geophysical

Research: Space Physics, 118(4), 1514–1528. https://doi.org/10.1002/jgra.50090

Lysak, R. L., & Yoshikawa, A. (2006). Resonant cavities and waveguides in the ionosphere and atmosphere. Geophysical Monograph Series,

169, 289–306. https://doi.org/10.1029/169GM19

Neukirch, T., Birk, G. T., Finger, K., & Schindler, K. (1995). A stationary fluid model of field-aligned electric fields and closure of Birkeland

currents. Journal of Geophysical Research, 100(A12), 23647–23661. https://doi.org/10.1029/95ja02589

Oguti, T. (1975). Two-tiered auroral band. Journal of Atmospheric and Terrestrial Physics, 37(11), 1501–1504. https://doi.

org/10.1016/0021-9169(75)90082-3

Opgenoorth, H. J., Pellinen, R. J., Baumjohann, W., Nielsen, E., Marklund, G., & Eliasson, L. (1983). Three-dimensional current flow and

particle precipitation in a westward travelling surge (observed during the Barium-Geos Rocket Experiment). Journal of Geophysical

Research, 88(A4), 3138–3152. https://doi.org/10.1029/JA088iA04p03138

Roe, P. L. (1986). Characteristic-based schemes for the Euler equations. Annual Review of Fluid Mechanics, 1, 337–365. https://doi.

org/10.1146/annurev.fl.18.010186.002005

Rostoker, G., & Hughes, T. J. (1979). A comprehensive model current system for high-latitude magnetic activity-II. The substorm component. Geophysical Journal International, 58(3), 571–581. https://doi.org/10.1111/j.1365-246X.1979.tb04794.x

Song, Y., & Lysak, R. L. (2001). The physics in the auroral dynamo regions and auroral particle acceleration. Physics and Chemistry of the

Earth, Part C: Solar, Terrestrial & Planetary Science, 26(1–3), 33–42. https://doi.org/10.1016/S1464-1917(00)00087-8

Spiro, R. W., Wolf, R. A., & Fejer, B. G. (1988). Penetration of high-latitude-electric-field effects to low latitudes during SUNDIAL 1984.

Annales Geophysicae, 6, 39–50.

Tanaka, T. (2003). Formation of magnetospheric plasma population regimes coupled with the dynamo process in the convection system.

Journal of Geophysical Research, 108, 1315. https://doi.org/10.1029/2002JA009668

Tu, J., & Song, P. (2016). A two-dimensional global simulation study of inductive-dynamic magnetosphere-ionosphere coupling. Journal

of Geophysical Research: Space Physics, 121(12), 11861–11811. https://doi.org/10.1002/2016ja023393

Yoshikawa, A. (2002). Excitation of a Hall-current generator by field-aligned current closure, via an ionospheric, divergent Hall-current,

during the transient phase of magnetosphere-ionosphere coupling. Journal of Geophysical Research, 107(A12), SMP 18-1–SMP 18-16.

https://doi.org/10.1029/2001ja009170

Yoshikawa, A., & Itonaga, M. (2000). The nature of reflection and mode conversion of MHD waves in the inductive ionosphere: Multistep

mode conversion between divergent and rotational electric fields. Journal of Geophysical Research, 105(A5), 10565–10584. https://doi.

org/10.1029/1999ja000159

Zhu, H., Otto, A., Lummerzheim, D., Rees, M. H., & Lanchester, B. S. (2001). Ionosphere-magnetosphere simulation of small-scale structure and dynamics. Journal of Geophysical Research, 106(A2), 1795–1806. https://doi.org/10.1029/1999ja000291

YANO AND EBIHARA

15 of 15

...

参考文献をもっと見る