リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Vibrational couplings and energy transfer pathways of water’s bending mode」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Vibrational couplings and energy transfer pathways of water’s bending mode

Yu, Chun-Chieh 大阪大学

2020.11.25

概要

Coupling between vibrational modes is essential for energy transfer and dissipation in condensed matter. For water, different O-H stretch modes are known to be very strongly coupled both within and between water molecules, leading to ultrafast dissipation and delocalization of vibrational energy. In contrast, the information on the vibrational coupling of the H-O-H bending mode of water is lacking, even though the bending mode is an essential intermediate for the energy relaxation pathway from the stretch mode to the heat bath. By combining static and femtosecond infrared, Raman, and hyper-Raman spectroscopies for isotopically diluted water with ab initio molecular dynamics simulations, we find the vibrational coupling of the bending mode differs significantly from the stretch mode: the intramode intermolecular coupling of the bending mode is very weak, in stark contrast to the stretch mode. Our results elucidate the vibrational energy transfer pathways of water. Specifically, the librational motion is essential for the vibrational energy relaxation and orientational dynamics of H-O-H bending mode.

この論文で使われている画像

参考文献

1. Perakis, F. et al. Vibrational spectroscopy and dynamics of water. Chem. Rev. 116, 7590–7607 (2016).

2. Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chem. Rev. 117, 10665–10693 (2017).

3. Rey, R., Møller, K. B. & Hynes, J. T. Hydrogen bond dynamics in water and ultrafast infrared spectroscopy: a theoretical study. J. Phys. Chem. A 106, 11993–11996 (2002).

4. Auer, B. M. & Skinner, J. L. IR and Raman spectra of liquid water: theory and interpretation. J. Chem. Phys. 128, 224511 (2008).

5. Bakker, H. J. & Skinner, J. L. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010).

6. Matt, S. M. & Ben-Amotz, D. Influence of intermolecular coupling on the vibrational spectrum of water. J. Phys. Chem. B 122, 5375–5380 (2018).

7. Woutersen, S. & Bakker, H. J. Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402, 507–509 (1999).

8. DeMarco, L. et al. Differences in the vibrational dynamics of H2O and D2O: observation of symmetric and antisymmetric stretching vibrations in heavy water. J. Phys. Chem. Lett. 7, 1769–1774 (2016).

9. Kananenka, A. A. & Skinner, J. L. Fermi resonance in OH-stretch vibrational spectroscopy of liquid water and the water hexamer. J. Chem. Phys. 148, 244107 (2018).

10. Schaefer, J., Backus, E. H. G., Nagata, Y. & Bonn, M. Both inter- and intramolecular coupling of O-H groups determine the vibrational response of the water/air interface. J. Phys. Chem. Lett. 7, 4591–4595 (2016).

11. Ahmed, M., Singh, A. K., Mondal, J. A. & Sarkar, S. K. Water in the hydration shell of halide ions has significantly reduced fermi resonance and moderately enhanced Raman cross section in the OH stretch regions. J. Phys. Chem. B 117, 9728–9733 (2013).

12. Ashihara, S., Huse, N., Espagne, A., Nibbering, E. T. J. & Elsaesser, T. Vibrational couplings and ultrafast relaxation of the O-H bending mode in liquid H2O. Chem. Phys. Lett. 424, 66–70 (2006).

13. Ashihara, S., Fujioka, S. & Shibuya, K. Temperature dependence of vibrational relaxation of the OH bending excitation in liquid H2O. Chem. Phys. Lett. 502, 57–62 (2011).

14. Huse, N., Ashihara, S., Nibbering, E. T. J. & Elsaesser, T. Ultrafast vibrational relaxation of O-H bending and librational excitations in liquid H2O. Chem. Phys. Lett. 404, 389–393 (2005).

15. Ramasesha, K., DeMarco, L., Mandal, A. & Tokmakoff, A. Water vibrations have strongly mixed intra- and intermolecular character. Nat. Chem. 5, 935–940 (2013).

16. Carpenter, W. B., Fournier, J. A., Biswas, R., Voth, G. A. & Tokmakoff, A. Delocalization and stretch-bend mixing of the HOH bend in liquid water. J. Chem. Phys. 147, 084503 (2017).

17. Marco, L. et al. Anharmonic exciton dynamics and energy dissipation in liquid water from two- dimensional infrared spectroscopy water from two- dimensional infrared spectroscopy. J. Chem. Phys. 145, 094501 (2017).

18. Lindner, J. et al. Vibrational relaxation of pure liquid water. Chem. Phys. Lett. 421, 329–333 (2006).

19. Lock, A. J. & Bakker, H. J. Temperature dependence of vibrational relaxation in liquid H2O. J. Chem. Phys. 117, 1708–1713 (2002).

20. Ashihara, S., Huse, N., Espagne, A., Nibbering, E. T. J. & Elsaesser, T. Ultrafast structural dynamics of water induced by dissipation of vibrational energy. J. Phys. Chem. A 111, 743–746 (2007).

21. Pakoulev, A., Wang, Z., Pang, Y. & Dlott, D. D. Vibrational energy relaxation pathways of water. Chem. Phys. Lett. 380, 404–410 (2003).

22. Chuntonov, L., Kumar, R. & Kuroda, D. G. Non-linear infrared spectroscopy of the water bending mode: direct experimental evidence of hydration shell reorganization? Phys. Chem. Chem. Phys. 16, 13172–13181 (2014).

23. Imoto, S., Xantheas, S. S. & Saito, S. Ultrafast dynamics of liquid water: energy relaxation and transfer processes of the OH stretch and the HOH bend. J. Phys. Chem. B 119, 11068–11078 (2015).

24. Rey, R., Ingrosso, F., Elsaesser, T. & Hynes, J. T. Pathways for H2O bend vibrational relaxation in liquid water. J. Phys. Chem. A 113, 8949–8962 (2009).

25. Ahmed, M., Namboodiri, V., Singh, A. K. & Mondal, J. A. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions. J. Chem. Phys. 141, 164708 (2014).

26. Ingrosso, F., Rey, R., Elsaesser, T. & Hynes, J. T. Ultrafast energy transfer from the intramolecular bending vibration to librations in liquid water. J. Phys. Chem. A 113, 6657–6665 (2009).

27. Kraemer, D. et al. Temperature dependence of the two-dimensional infrared spectrum of liquid H2O. Proc. Natl Acad. Sci. USA 105, 437–442 (2008).

28. Nagata, Y., Yoshimune, S., Hsieh, C., Hunger, J. & Bonn, M. Ultrafast vibrational dynamics of water disentangled by reverse nonequilibrium ab initio molecular dynamics simulations. Phys. Rev. X 5, 021002 (2015).

29. Wang, Z., Pakoulev, A., Pang, Y. & Dlott, D. D. Vibrational substructure in the OH stretching transition of water and HOD. J. Phys. Chem. A 108, 9054–9063 (2004).

30. Torii, H. Ultrafast anisotropy decay of coherent excitations and the non- coincidence effect for delocalized vibrational modes in liquids. Chem. Phys. Lett. 323, 382–388 (2000).

31. Logan, D. E. The non-coincidence effect in the raman spectra of polar liquids. Chem. Phys. 103, 215–225 (1986).

32. Ni, Y. & Skinner, J. L. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively. J. Chem. Phys. 143, 014502 (2015).

33. Seki, T. et al. Decoding the molecular water structure at complex interfaces through surface-specific spectroscopy of the water bending mode. Phys. Chem. Chem. Phys. 22, 10934–10940 (2020).

34. Vinaykin, M. & Benderskii, A. V. Vibrational sum-frequency spectrum of the water bend at the air/water interface. J. Phys. Chem. Lett. 3, 3348–3352 (2012).

35. Piatkowski, L., Eisenthal, K. B. & Bakker, H. J. Ultrafast intermolecular energy transfer in heavy water. Phys. Chem. Chem. Phys. 11, 9033–9038 (2009).

36. Rahman, A. & Stillinger, F. H. Molecular dynamics study of liquid water. J. Chem. Phys. 55, 3336–3359 (1971).

37. Laage, D. & Hynes, J. T. A molecular jump mechanism of water reorientation. Science 311, 832–835 (2006).

38. Laage, D., Stirnemann, G., Sterpone, F., Rey, R. & Hynes, J. T. Reorientation and allied dynamics in water and aqueous solutions. Annu. Rev. Phys. Chem. 62, 395–416 (2011).

39. Wernet, P. et al. The structure of the first coordination shell in liquid water. Science 304, 995–999 (2004).

40. Kühne, T. D. & Khaliullin, R. Z. Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water. Nat. Commun. 4, 1450 (2013).

41. Fecko, C. J., Loparo, J. J., Roberts, S. T. & Tokmakoff, A. Local hydrogen bonding dynamics and collective reorganization in water: ultrafast infrared spectroscopy of HOD/D2O. J. Chem. Phys. 122, 054506 (2005).

42. Lawrence, C. P. & Skinner, J. L. Vibrational spectroscopy of HOD in liquid III. Spectral diffusion, and hydrogen- bonding and rotational dynamics. J. Chem. Phys. 118, 264–272 (2003).

43. Woutersen, S. & Bakker, H. J. Hydrogen bond in liquid water as a brownian oscillator hydrogen bond in liquid water as a brownian oscillator. Phys. Rev. Lett. 83, 2077–2080 (1999).

44. Nienhuys, H.-K., Santen, R. Avan & Bakker, H. J. Orientational relaxation of liquid water molecules as an activated process. J. Chem. Phys. 112, 8487 (2000).

45. Bieze, T. W. N., van derMaarel, J. R. C. & Leyte, J. C. The intramolecular OH bond length of water in a concentrated poly(ethyleneoxide) solution. An NMR relaxation study. Chem. Phys. Lett. 216, 56–62 (1993).

46. Struis, R. P. W. J., DeBleijser, J. & Leyte, J. C. Dynamic behavior and some of the molecular properties of water molecules in pure water and in magnesium chloride solutions. J. Phys. Chem. 91, 1639–1645 (1987).

47. van derMaarel, J. R. C., Lankhorst, D., deBleijser, J. & Leyte, J. C. On the single-molecule dynamics of water from proton, deuterium and oxygen-17 nuclear magnetic relaxation. Chem. Phys. Lett. 122, 541–544 (1985).

48. Ludwig, R., Weinhold, F. & Farrar, T. C. Experimental and theoretical determination of the temperature dependence of deuteron and oxygen quadrupole coupling constants of liquid water. J. Chem. Phys. 103, 6941–6950 (1995).

49. Larouche, P., Max, J.-J. & Chapados, C. Isotope effects in liquid water by infrared spectroscopy. II. Factor analysis of the temperature effect on H2O and D2O. J. Chem. Phys. 129, 064503 (2008).

50. Hu, Q., Zhao, H. & Ouyang, S. Understanding water structure from Raman spectra of isotopic substitution H2O/D2O up to 573 K. Phys. Chem. Chem. Phys. 19, 21540–21547 (2017).

51. Cowan, M. L. et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434, 199–202 (2005).

52. Van DerPost, S. T. et al. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015).

53. Hasegawa, T. & Tanimura, Y. A polarizable water model for intramolecular and intermolecular vibrational spectroscopies. J. Phys. Chem. B 115, 5545–5553 (2011).

54. Zhong, K. et al. Vibrational mode frequency correction of liquid water in density functional theory molecular dynamics simulations with van der Waals correction. Phys. Chem. Chem. Phys. 22, 12785–12793 (2020).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る