リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comprehensive in virio structure probing analysis of the influenza A virus identifies functional RNA structures involved in viral genome replication」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comprehensive in virio structure probing analysis of the influenza A virus identifies functional RNA structures involved in viral genome replication

Takizawa, Naoki Kawaguchi, Risa Karakida 京都大学 DOI:10.1016/j.csbj.2023.10.036

2023

概要

The influenza A virus genome is segmented into eight viral RNAs (vRNA). Secondary structures of vRNA are known to be involved in the viral proliferation process. Comprehensive vRNA structures in vitro, in virio, and in cellulo have been analyzed. However, the resolution of the structure map can be improved by comparative analysis and statistical modeling. Construction of a more high-resolution and reliable RNA structure map can identify uncharacterized functional structure motifs on vRNA in virion. Here, we establish the global map of the vRNA secondary structure in virion using the combination of dimethyl sulfate (DMS)-seq and selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE)-seq with a robust statistical analysis. Our high-resolution analysis identified a stem-loop structure at nucleotide positions 39 – 60 of segment 6 and further validated the structure at nucleotide positions 87 – 130 of segment 5 that was previously predicted to form a pseudoknot structure in silico. Notably, when the cells were infected with recombinant viruses which possess the mutations to disrupt the structure, the replication and packaging of the viral genome were drastically decreased. Our results provide comprehensive and high-resolution information on the influenza A virus genome structures in virion and evidence that the functional RNA structure motifs on the influenza A virus genome are associated with appropriate replication and packaging of the viral genome.

この論文で使われている画像

参考文献

[1] Noda T, Murakami S, Nakatsu S, Imai H, Muramoto Y, Shindo K, et al. Importance

of the 1+7 configuration of ribonucleoprotein complexes for influenza A virus

genome packaging. Nat Commun 2018;9:1–10. https://doi.org/10.1038/s41467017-02517-w.

5271

Computational and Structural Biotechnology Journal 21 (2023) 5259–5272

N. Takizawa and R.K. Kawaguchi

[2] Noda T, Sagara H, Yen A, Takada A, Kida H, Cheng RH, et al. Architecture of

ribonucleoprotein complexes in influenza A virus particles. Nature 2006;439:

490–2. https://doi.org/10.1038/nature04378.

[3] Arranz R, Coloma R, Chich´

on FJ, Conesa JJ, Carrascosa JL, Valpuesta JM, et al. The

structure of native influenza virion ribonucleoproteins. Science 2012;338:1634–7.

https://doi.org/10.1126/science.1228172.

[4] Gerber M, Isel C, Moules V, Marquet R. Selective packaging of the influenza A

genome and consequences for genetic reassortment. Trends Microbiol 2014;22:

446–55. https://doi.org/10.1016/j.tim.2014.04.001.

[5] Gavazzi C, Yver M, Isel C, Smyth RP, Rosa-Calatrava M, Lina B, et al. A functional

sequence-specific interaction between influenza A virus genomic RNA segments.

Proc Natl Acad Sci USA 2013;110:16604–9. https://doi.org/10.1073/

pnas.1314419110.

[6] Rausch JW, Sztuba-Solinska J, Le Grice SFJ. Probing the structures of viral RNA

regulatory elements with SHAPE and related methodologies. Front Microbiol 2018;

8:1–15. https://doi.org/10.3389/fmicb.2017.02634.

[7] Reich S, Guilligay D, Pflug A, Malet H, Berger I, Cr´epin T, et al. Structural insight

into cap-snatching and RNA synthesis by influenza polymerase. Nature 2014.

https://doi.org/10.1038/nature14009.

[8] Pflug A, Guilligay D, Reich S, Cusack S. Structure of influenza A polymerase bound

to the viral RNA promoter. Nature 2014;516:355–60. https://doi.org/10.1038/

nature14008.

[9] Wandzik JM, Kouba T, Karuppasamy M, Pflug A, Drncova P, Provaznik J, et al.

A structure-based model for the complete transcription cycle of influenza

polymerase. e21 Cell 2020;181:877–93. https://doi.org/10.1016/j.

cell.2020.03.061.

[10] Gultyaev AP, Tsyganov-Bodounov A, Spronken MIJ, Van Der Kooij S,

Fouchier RAM, Olsthoorn RCL. RNA structural constraints in the evolution of the

influenza A virus genome NP segment. RNA Biol 2014;11:942–52. https://doi.org/

10.4161/rna.29730.

[11] Kobayashi Y, Dadonaite B, Doremalen NVan, Barclay WS, Pybus OG.

Computational and molecular analysis of conserved influenza A virus RNA

secondary structures involved in infectious virion production. RNA Biol 2016;13:

883–94. https://doi.org/10.1080/15476286.2016.1208331.

[12] Gultyaev AP, Spronken MI, Richard M, Schrauwen EJA, Olsthoorn RCL,

Fouchier RAM. Subtype-specific structural constraints in the evolution of influenza

A virus hemagglutinin genes. Sci Rep 2016;6:1–15. https://doi.org/10.1038/

srep38892.

[13] Takizawa N, Ogura Y, Fujita Y, Noda T, Shigematsu H, Hayashi T, et al. Local

structural changes of the influenza A virus ribonucleoprotein complex by single

mutations in the specific residues involved in efficient genome packaging. Virology

2019;531:126–40. https://doi.org/10.1016/j.virol.2019.03.004.

[14] Ruszkowska A, Lenartowicz E, Moss WN, Kierzek R, Kierzek E. Secondary structure

model of the naked segment 7 influenza A virus genomic RNA. Biochem J 2016;

473:4327–48. https://doi.org/10.1042/BCJ20160651.

[15] Lenartowicz E, Kesy J, Ruszkowska A, Soszynska-Jozwiak M, Michalak P,

Moss WN, et al. Self-folding of naked segment 8 genomic RNA of influenza a virus.

PLoS One 2016;11:1–21. https://doi.org/10.1371/journal.pone.0148281.

[16] Michalak P, Soszynska-Jozwiak M, Biala E, Moss WN, Kesy J, Szutkowska B, et al.

Secondary structure of the segment 5 genomic RNA of influenza A virus and its

application for designing antisense oligonucleotides. Sci Rep 2019;9:1–16. https://

doi.org/10.1038/s41598-019-40443-7.

[17] Lee N, Le Sage V, Nanni AV, Snyder DJ, Cooper VS, Lakdawala SS. Genome-wide

analysis of influenza viral RNA and nucleoprotein association. Nucleic Acids Res

2017;45:8968–77. https://doi.org/10.1093/nar/gkx584.

[18] Williams GD, Townsend D, Wylie KM, Kim PJ, Amarasinghe GK, Kutluay SB, et al.

Nucleotide resolution mapping of influenza A virus nucleoprotein-RNA

interactions reveals RNA features required for replication. Nat Commun 2018;9:

465. https://doi.org/10.1038/s41467-018-02886-w.

[19] Yamanaka K, Ishihama A, Nagata K. Reconstitution of influenza virus RNAnucleoprotein complexes structurally resembling native viral ribonucleoprotein

cores. J Biol Chem 1990;265:11151–5.

[20] Dadonaite B, Gilbertson B, Knight ML, Trifkovic S, Rockman S, Laederach A, et al.

The structure of the influenza A virus genome. Nat Microbiol 2019;4:1781–9.

https://doi.org/10.1038/s41564-019-0513-7.

[21] Mirska B, Wo´zniak T, Lorent D, Ruszkowska A, Peterson JM, Moss WN, et al. In

vivo secondary structural analysis of Influenza A virus genomic RNA. Cell Mol Life

Sci 2023:80. https://doi.org/10.1007/s00018-023-04764-1.

[22] Sexton AN, Wang PY, Rutenberg-Schoenberg M, Simon MD. Interpreting reverse

transcriptase termination and mutation events for greater insight into the chemical

probing of RNA. Biochemistry 2017;56:4713–21. https://doi.org/10.1021/acs.

biochem.7b00323.

[23] Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS. Genome-wide probing of

RNA structure reveals active unfolding of mRNA structures in vivo. Nature 2014;

505:701–5. https://doi.org/10.1038/nature12894.

[24] Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM. In vivo genomewide profiling of RNA secondary structure reveals novel regulatory features.

Nature 2014;505:696–700. https://doi.org/10.1038/nature12756.

[25] Wan Y, Qu K, Zhang QC, Flynn R a, Manor O, Ouyang Z, et al. Landscape and

variation of RNA secondary structure across the human transcriptome. Nature

2014;505:706–9. https://doi.org/10.1038/nature12946.

[26] Spitale RC, Crisalli P, Flynn R a, Torre E a, Kool ET, Chang HY. RNA SHAPE

analysis in living cells. Nat Chem Biol 2013;9:18–20. https://doi.org/10.1038/

nchembio.1131.

[27] Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S, Schroth GP, et al. Multiplexed

RNA structure characterization with selective 2′-hydroxyl acylation analyzed by

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

5272

primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci 2011;108:11063–8.

https://doi.org/10.1073/pnas.1106501108.

Selega A, Sirocchi C, Iosub I, Granneman S, Sanguinetti G. Robust statistical

modeling improves sensitivity of high-throughput RNA structure probing

experiments. Nat Methods 2017;14:83–9. https://doi.org/10.1038/nmeth.4068.

Kawaguchi R, Kiryu H, Iwakiri J, Sese J. reactIDR: evaluation of the statistical

reproducibility of high-throughput structural analyses towards a robust RNA

structure prediction. BMC Bioinforma 2019;20:130. https://doi.org/10.1186/

s12859-019-2645-4.

Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, et al. Generation of

influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci 1999;96:

9345–50. https://doi.org/10.1073/pnas.96.16.9345.

Ohkura T, Momose F, Ichikawa R, Takeuchi K, Morikawa Y. Influenza A virus

hemagglutinin and neuraminidase mutually accelerate their apical targeting

through clustering of lipid rafts. J Virol 2014;88:10039–55. https://doi.org/

10.1128/JVI.00586-14.

Ding Y, Kwok CK, Tang Y, Bevilacqua PC, Assmann SM. Genome-wide profiling of

in vivo RNA structure at single-nucleotide resolution using structure-seq. Nat

Protoc 2015;10:1050–66. https://doi.org/10.1038/nprot.2015.064.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina

sequence data. Bioinformatics 2014;30:2114–20. https://doi.org/10.1093/

bioinformatics/btu170.

Incarnato D, Neri F, Anselmi F, Oliviero S. RNA structure framework: automated

transcriptome-wide reconstruction of RNA secondary structures from highthroughput structure probing data. Bioinformatics 2016;32:459–61. https://doi.

org/10.1093/bioinformatics/btv571.

Incarnato D, Morandi E, Simon LM, Oliviero S. RNA framework: an all-in-one

toolkit for the analysis of RNA structures and post-transcriptional modifications.

Nucleic Acids Res 2018;46:e97. https://doi.org/10.1093/nar/gky486.

Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure

prediction and analysis. BMC Bioinforma 2010:11. https://doi.org/10.1186/14712105-11-129.

Sato K, Kato Y, Hamada M, Akutsu T, Asai K. IPknot: fast and accurate prediction of

RNA secondary structures with pseudoknots using integer programming.

Bioinformatics 2011;27:i85–93. https://doi.org/10.1093/bioinformatics/btr215.

Robinson JT, Thorvaldsd´

ottir H, Winckler W, Guttman M, Lander ES, Getz G, et al.

Integrative genomics viewer. Nat Biotechnol 2011;29:24–6. https://doi.org/

10.1038/nbt.1754.

Takizawa N, Watanabe K, Nouno K, Kobayashi N, Nagata K. Association of

functional influenza viral proteins and RNAs with nuclear chromatin and subchromatin structure. Microbes Infect 2006;8:823–33. https://doi.org/10.1016/j.

micinf.2005.10.005.

Schneider C a, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image

analysis. Nat Methods 2012;9:671–5. https://doi.org/10.1038/nmeth.2089.

Turrell L, Lyall JW, Tiley LS, Fodor E, Vreede FT. The role and assembly

mechanism of nucleoprotein in influenza A virus ribonucleoprotein complexes. Nat

Commun 2013;4:1591. https://doi.org/10.1038/ncomms2589.

Mitchell D, Assmann SM, Bevilacqua PC. Probing RNA structure in vivo. Curr Opin

Struct Biol 2019;59:151–8. https://doi.org/10.1016/j.sbi.2019.07.008.

Li Q, Brown JB, Huang H, Bickel PJ. Measuring reproducibility of high-throughput

experiments. Ann Appl Stat 2011;5:1752–79. https://doi.org/10.1214/11AOAS466.

Smola MJ, Calabrese JM, Weeks KM. Detection of RNA-protein interactions in

living cells with SHAPE. Biochemistry 2015;54:6867–75. https://doi.org/10.1021/

acs.biochem.5b00977.

Gaunt E, Wise HM, Zhang H, Lee LN, Atkinson NJ, Nicol MQ, et al. Elevation of

CpG frequencies in influenza a genome attenuates pathogenicity but enhances host

response to infection. Elife 2016;5:1–19. https://doi.org/10.7554/eLife.12735.

Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S. Virus

attenuation by genome-scale changes in codon pair bias. Science 2008;320:

1784–7. https://doi.org/10.1126/science.1155761.

Gog JR, Afonso EDS, Dalton RM, Leclercq I, Tiley L, Elton D, et al. Codon

conservation in the influenza A virus genome defines RNA packaging signals.

Nucleic Acids Res 2007;35:1897–907. https://doi.org/10.1093/nar/gkm087.

Ye Q, Krug RM, Tao YJ. The mechanism by which influenza A virus nucleoprotein

forms oligomers and binds RNA. Nature 2006;444:1078–82. https://doi.org/

10.1038/nature05379.

Le Sage V, Kanarek JP, Snyder DJ, Cooper VS, Lakdawala SS, Lee N. Mapping of

influenza virus RNA-RNA interactions reveals a flexible network. Cell Rep 2020;31:

107823. https://doi.org/10.1016/j.celrep.2020.107823.

Hagey RJ, Elazar M, Pham EA, Tian S, Ben-Avi L, Bernardin-Souibgui C, et al.

Programmable antivirals targeting critical conserved viral RNA secondary

structures from influenza A virus and SARS-CoV-2. Nat Med 2022. https://doi.org/

10.1038/s41591-022-01908-x.

Peterson JM, Leary CAO, Moss WN. In silico analysis of local RNA secondary

structure in influenza virus A, B and C finds evidence of widespread ordered

stability but little evidence of significant covariation. Sci Rep 2022:1–10. https://

doi.org/10.1038/s41598-021-03767-x.

Hutchinson EC, Wise HM, Kudryavtseva K, Curran MD, Digard P. Characterisation

of influenza A viruses with mutations in segment 5 packaging signals. Vaccine

2009;27:6270–5. https://doi.org/10.1016/j.vaccine.2009.05.053.

Szczesniak I, Baliga-Gil A, Jarmolowicz A, Soszynska-Jozwiak M, Kierzek E.

Structural and functional RNA Motifs of SARS-CoV-2 and influenza A virus as a

target of viral inhibitors. Int J Mol Sci 2023;24:1232. https://doi.org/10.3390/

ijms24021232.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る