リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cryo-electron microscopic structure of the nucleoprotein-RNA complex of the European filovirus, Lloviu virus」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cryo-electron microscopic structure of the nucleoprotein-RNA complex of the European filovirus, Lloviu virus

Hu, Shangfan Fujita-Fujiharu, Yoko Sugita, Yukihiko Wendt, Lisa Muramoto, Yukiko Nakano, Masahiro Hoenen, Thomas Noda, Takeshi 京都大学 DOI:10.1093/pnasnexus/pgad120

2023.04

概要

Lloviu virus (LLOV) is a novel filovirus detected in Schreiber’s bats in Europe. The isolation of the infectious LLOV from bats has raised public health concerns. However, the virological and molecular characteristics of LLOV remain largely unknown. The nucleoprotein (NP) of LLOV encapsidates the viral genomic RNA to form a helical NP-RNA complex, which acts as a scaffold for nucleocapsid formation and de novo viral RNA synthesis. In this study, using single-particle cryo-electron microscopy, we determined two structures of the LLOV NP-RNA helical complex, comprising a full-length and a C-terminally truncated NP. The two helical structures were identical, demonstrating that the N-terminal region determines the helical arrangement of the NP. The LLOV NP-RNA protomers displayed a structure similar to that in the Ebola and Marburg virus, but the spatial arrangements in the helix differed. Structure-based mutational analysis identified amino acids involved in the helical assembly and viral RNA synthesis. These structures advance our understanding of the filovirus nucleocapsid formation, and provide a structural basis for the development of anti-filoviral therapeutics.

参考文献

Negredo A, et al. 2011. Discovery of an Ebolavirus-like Filovirus in

Europe. PLoS Pathog. 7:e1002304.

Kemenesi G, et al. 2018. Re-emergence of Lloviu virus in

Miniopterus schreibersii bats, Hungary, 2016. Emerg Microbes

Infect. 7:66.

Kemenesi G, et al. 2022. Isolation of infectious Lloviu virus from

Schreiber’s Bats in Hungary. Nat Commun. 13:1706.

Towner JS, et al. 2009. Isolation of genetically diverse Marburg vi­

ruses from Egyptian fruit bats. PLoS Pathog. 5:e1000536.

Elliott LH, Kiley MP, McCormick JB. 1985. Descriptive analysis of

Ebola virus proteins. Virology. 147:169–176.

Hu S, Noda T. 2022. Filovirus helical nucleocapsid structures.

Microscopy (Oxf). Online ahead of print. doi:10.1093/jmicro/

dfac049

Maruyama J, et al. 2014. Characterization of the envelope glyco­

protein of a novel filovirus, Lloviu virus. J Virol. 88:99–109.

Ruigrok RW, Crépin T, Kolakofsky D. 2011. Nucleoproteins and

nucleocapsids of negative-strand RNA viruses. Curr Opin

Microbiol. 14:504–510.

Mühlberger E. 2007. Filovirus replication and transcription.

Future Virol. 2:205–215.

Virol. 91:e00825-17.

20 Wendt L, et al. 2022. Evidence for viral mRNA export from Ebola

virus inclusion bodies by the nuclear RNA export factor NXF1. J

Virol. 96:e0090022.

21 Renner M, et al. 2016. Nucleocapsid assembly in pneumoviruses

is regulated by conformational switching of the N protein. Elife.

5:e12627.

22 Gutsche I, et al. 2015. Structural virology. Near-atomic cryo-EM

structure of the helical measles virus nucleocapsid. Science.

348:704–707.

23 Green TJ, Zhang X, Wertz GW, Luo M. 2006. Structure of the ves­

icular stomatitis virus nucleoprotein-RNA complex. Science. 313:

357–360.

24 Hastie KM, et al. 2011. Crystal structure of the Lassa virus

nucleoprotein-RNA complex reveals a gating mechanism for

RNA binding. Proc Natl Acad Sci U S A. 108:19365–19370.

25 Alayyoubi M, Leser GP, Kors CA, Lamb RA. 2015. Structure of the

paramyxovirus parainfluenza virus 5 nucleoprotein-RNA com­

plex. Proc Natl Acad Sci U S A. 112:E1792–E1799.

26 Zhu T, et al. 2017. Crystal structure of the Marburg virus nucleo­

protein core domain chaperoned by a VP35 peptide reveals a con­

served drug target for filovirus. J Virol. 91:e00996-17.

27 Shi M, et al. 2018. The evolutionary history of vertebrate RNA vi­

ruses. Nature. 556:197–202.

28 Yang X-L, et al. 2019. Characterization of a filovirus (Menglà

virus) from Rousettus bats in China. Nat Microbiol. 4:390–395.

29 Horie M. 2021. Identification of a novel filovirus in a common lan­

cehead (Bothrops atrox (Linnaeus, 1758)). J Vet Med Sci. 83:

1485–1488.

30 Hierweger MM, et al. 2021. Novel Filoviruses, Hantavirus, and

Rhabdovirus in freshwater fish, Switzerland, 2017. Emerg Infect

Dis. 27:3082–3091.

31 Rohou A, Grigorieff N. 2015. CTFFIND4: fast and accurate defocus

estimation from electron micrographs. J Struct Biol. 192:216–221.

Downloaded from https://academic.oup.com/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgad120/7109902 by Library,Faculty of Agriculture/Graduate School of Agriculture,Kyoto University user on 28 April 2023

Hu et al. |

PNAS Nexus, 2023, Vol. 2, No. 4

32 Zivanov J, et al. 2018. New tools for automated high-resolution

cryo-EM structure determination in RELION-3. Elife. 7:e42166.

33 He S, Scheres SHW. 2017. Helical reconstruction in RELION. J

Struct Biol. 198:163–176.

34 Liao HY, Frank J. 2010. Definition and estimation of resolution in

single-particle reconstructions. Structure. 18:768–775.

35 Pettersen EF, et al. 2004. UCSF Chimera–a visualization system

for exploratory research and analysis. J Comput Chem. 25:

1605–1612.

36 Emsley P, Cowtan K. 2004. Coot: model-building tools for molecu­

lar graphics. Acta Crystallogr D Biol Crystallogr. 60:2126–2132.

37 Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and

development of coot. Acta Crystallogr D Biol Crystallogr. 66:

486–501.

38 Adams PD, et al. 2002. PHENIX: building new software for auto­

mated crystallographic structure determination. Acta Crystallogr D

Biol Crystallogr. 58:1948–1954.

39 Goddard TD, et al. 2018. UCSF Chimerax: meeting modern chal­

lenges in visualization and analysis. Protein Sci. 27:14–25.

40 Kämper L, et al. 2019. Assessment of the function and intergenuscompatibility of Ebola and Lloviu virus proteins. J Gen Virol. 100:

760–772.

Downloaded from https://academic.oup.com/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgad120/7109902 by Library,Faculty of Agriculture/Graduate School of Agriculture,Kyoto University user on 28 April 2023

10 |

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る