リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Significance of powder feedstock characteristics in defect suppression of additively manufactured Inconel 718」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Significance of powder feedstock characteristics in defect suppression of additively manufactured Inconel 718

Yufan Zhao Kenta Aoyagi Yohei Daino Kenta Yamanaka Akihiko Chiba 東北大学 DOI:10.1016/j.addma.2020.101277

2020.08

概要

The characteristics of powder applied in electron beam powder-bed fusion (EB-PBF) play a vital role in the process stability and final part performance. We use two types of Inconel 718 alloy powders for experiments, namely, (i) imperfect spherical and (ii) spherical powders. They are different in geometry and built-in defect because of different powder fabrication techniques. The forming qualities concerning surface topography, density, and internal defect of the EB-PBF-built IN718 samples prepared using two types of powders are characterized under the same processing conditions. In particular, the forming qualities of the samples built with each kind of powder, under the optimal process condition, derived by a machine learning method, are further compared. Notably, different powder geometries with different surface features inevitably affect the heat transfer during melting. The significance of powder feedstock characteristics in defect suppression is clarified with the aid of numerical simulations. Under the processing conditions of the present study, compared to those of spherical powders, imperfect spherical powders exhibit low energy absorption rate and low thermal conductivity, making them more likely to evoke lack–of–fusion and excessive melting under low and high energy conditions, respectively. Thus, spherical powders have a broader process window in ensuring a higher density and smoother surface than that of imperfect spherical powders. Moreover, the high cooling and solidification rates in the sample built with spherical powders result in the suppression of the interdendritic void formation.

この論文で使われている画像

参考文献

[1] C. Körner, Additive manufacturing of metallic components by selective electron beam melting - A review, International Materials Reviews. 61 (2016) 361–377. doi:10.1080/09506608.2016.1176289.

[2] M. Galati, L. Iuliano, A literature review of powder-based electron beam melting focusing on numerical simulations, Additive Manufacturing. 19 (2018) 1–20. doi:10.1016/j.addma.2017.11.001.

[3] P. Nandwana, M.M. Kirka, V.C. Paquit, S. Yoder, R.R. Dehoff, Correlations Between Powder Feedstock Quality, In Situ Porosity Detection, and Fatigue Behavior of Ti-6Al-4V Fabricated by Powder Bed Electron Beam Melting: A Step Towards Qualification, JOM. 70 (2018) 1686–1691. doi:10.1007/s11837-018-3034-6.

[4] Z. Snow, R. Martukanitz, S. Joshi, On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing, Additive Manufacturing. 28 (2019) 78–86. doi:10.1016/j.addma.2019.04.017.

[5] M.J. Heiden, L.A. Deibler, J.M. Rodelas, J.R. Koepke, D.J. Tung, D.J. Saiz, B.H. Jared, Evolution of 316L stainless steel feedstock due to laser powder bed fusion process, Additive Manufacturing. 25 (2019) 84–103. doi:10.1016/j.addma.2018.10.019.

[6] N. Aboulkhair, N, Maskery, I, Ashcroft I, Tuck, C, Everitt, The role of powder properties on the processability of Aluminium alloys in selective laser melting Lasers in Manufacturing Conference 2015 The role of powder properties on the processability of Aluminium alloys in selective laser melting, in: Lasers in Manufacturing Conference 2015, 2015.

[7] J. Karlsson, A. Snis, H. Engqvist, J. Lausmaa, Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti-6Al-4V powder fractions, Journal of Materials Processing Technology. 213 (2013) 2109–2118. doi:10.1016/j.jmatprotec.2013.06.010.

[8] C. Panwisawas, C.L. Qiu, Y. Sovani, J.W. Brooks, M.M. Attallah, H.C. Basoalto, On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting, Scripta Materialia. 105 (2015) 14–17. doi:10.1016/j.scriptamat.2015.04.016

[9] W. Tillmann, C. Schaak, J. Nellesen, M. Schaper, M.E. Aydinöz, K.P. Hoyer, Hot isostatic pressing of IN718 components manufactured by selective laser melting, Additive Manufacturing. 13 (2017) 93–102. doi:10.1016/j.addma.2016.11.006.

[10] R. Cunningham, A. Nicolas, J. Madsen, E. Fodran, E. Anagnostou, M.D. Sangid, A.D. Rollett, Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V, Materials Research Letters. 5 (2017) 516–525. doi:10.1080/21663831.2017.1340911.

[11] S. Sui, H. Tan, J. Chen, C. Zhong, Z. Li, W. Fan, A. Gasser, W. Huang, The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing, Acta Materialia. 164 (2019) 413–427. doi:10.1016/j.actamat.2018.10.032.

[12] L. Scime, J. Beuth, Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process, Additive Manufacturing. 29 (2019). doi:10.1016/j.addma.2019.100830.

[13] X. Wang, K. Chou, Effects of thermal cycles on the microstructure evolution of Inconel 718 during selective laser melting process, Additive Manufacturing. 18 (2017) 1–14. doi:10.1016/j.addma.2017.08.016.

[14] G.L. Knapp, N. Raghavan, A. Plotkowski, T. DebRoy, Experiments and simulations on solidification microstructure for Inconel 718 in powder bed fusion electron beam additive manufacturing, Additive Manufacturing. 25 (2019) 511–521. doi:10.1016/j.addma.2018.12.001.

[15] J.H. Tan, W.L.E. Wong, K.W. Dalgarno, An overview of powder granulometry on feedstock and part performance in the selective laser melting process, Additive Manufacturing. 18 (2017) 228–255. doi:10.1016/j.addma.2017.10.011.

[16] L.I. Escano, N.D. Parab, L. Xiong, Q. Guo, C. Zhao, K. Fezzaa, W. Everhart, T. Sun, L. Chen, Revealing particle-scale powder spreading dynamics in powder-bed-based additive manufacturing process by high-speed x-ray imaging, Scientific Reports. 8 (2018) 1-11F. doi:10.1038/s41598-018-33376-0.

[17] P. Sun, Z.Z. Fang, Y. Zhang, Y. Xia, Review of the Methods for Production of Spherical Ti and Ti Alloy Powder, JOM. 69 (2017) 1853–1860. doi:10.1007/s11837-017-2513-5.

[18] A. Bauereiß, T. Scharowsky, C. Körner, Defect generation and propagation mechanism during additive manufacturing by selective beam melting, Journal of Materials Processing Technology. 214 (2014) 2522–2528. doi:10.1016/j.jmatprotec.2014.05.002.

[19] N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Additive Manufacturing. 1 (2014) 77–86. doi:10.1016/j.addma.2014.08.001.

[20] B. Dutta, S. Babu, B. Jared, Science, Technology and Applications of Metals in Additive Manufacturing, 1st Editio, Elsevier, Amsterdam, 2019.

[21] G. Chen, S.Y. Zhao, P. Tan, J. Wang, C.S. Xiang, H.P. Tang, A comparative study of Ti-6Al4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization, Powder Technology. 333 (2018) 38–46. doi:10.1016/j.powtec.2018.04.013.

[22] C.M. Huang, Y.J. Lee, D.K.J. Lin, S.Y. Huang, Model selection for support vector machines via uniform design, Computational Statistics and Data Analysis. 52 (2007) 335–346. doi:10.1016/j.csda.2007.02.013.

[23] Modenese, C. (2013). Numerical study of the mechanical properties of lunar soil by the discrete element method (Doctoral dissertation, Oxford University, UK).

[24] V. Šmilauer et al. (2015), Yade Documentation 2nd ed. The Yade Project. (http://yadedem.org/doc/). doi:10.5281/zenodo.34073.

[25] FLOW-3D® Version 11.2 [Computer software]. (2017). Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com.

[26] Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka, A. Chiba, Characterization of powder bed generation in electron beam additive manufacturing by discrete element method (DEM), in: Materials Today: Proceedings, 2017: pp. 11437–11440. doi:10.1016/j.matpr.2017.09.023.

[27] Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka, A. Chiba, Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy, Additive Manufacturing. 26 (2019) 202–214. doi:10.1016/j.addma.2018.12.002.

[28] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Materialia. 117 (2016) 371–392. doi:10.1016/j.actamat.2016.07.019.

[29] T. Mukherjee, J.S. Zuback, A. De, T. DebRoy, Printability of alloys for additive manufacturing, Scientific Reports. 6 (2016) 19717. doi:10.1038/srep19717.

[30] W.W. Wits, R. Bruins, L. Terpstra, R.A. Huls, H.J.M. Geijselaers, Single scan vector prediction in selective laser melting, Additive Manufacturing. 9 (2016) 1–6. doi:10.1016/j.addma.2015.12.001.

[31] C. Zhong, J. Chen, S. Linnenbrink, A. Gasser, S. Sui, R. Poprawe, A comparative study of Inconel 718 formed by High Deposition Rate Laser Metal Deposition with GA powder and PREP powder, Materials and Design. 107 (2016) 386–392. doi:10.1016/j.matdes.2016.06.037.

[32] K. Aoyagi, H. Wang, H. Sudo, A. Chiba, Simple method to construct process maps for additive manufacturing using a support vector machine, Additive Manufacturing. 27 (2019) 353–362. doi:10.1016/j.addma.2019.03.013.

[33] W. Nan, M. Pasha, T. Bonakdar, A. Lopez, U. Zafar, S. Nadimi, M. Ghadiri, Jamming during particle spreading in additive manufacturing, Powder Technology. 338 (2018) 253–262. doi:10.1016/j.powtec.2018.07.030.

[34] H. Qi, M. Azer, A. Ritter, Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 40 (2009) 2410–2422. doi:10.1007/s11661-009-9949-3.

[35] X. Shui, K. Yamanaka, M. Mori, Y. Nagata, K. Kurita, A. Chiba, Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting, Materials Science and Engineering A. 680 (2017) 239–248. doi:10.1016/j.msea.2016.10.059.

[36] N. Hrabe, T. Gnäupel-Herold, T. Quinn, Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress, International Journal of Fatigue. 94 (2017) 202–210. doi:10.1016/j.ijfatigue.2016.04.022.

[37] S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics. 19 (2011) 776–781. doi:10.1016/j.intermet.2010.11.017

[38] R. Cunningham, S.P. Narra, C. Montgomery, J. Beuth, A.D. Rollett, Synchrotron-Based X-ray Microtomography Characterization of the Effect of Processing Variables on Porosity Formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V, JOM. 69 (2017) 479– 484. doi:10.1007/s11837-016-2234-1.

[39] E.J.R. Parteli, DEM simulation of particles of complex shapes using the multisphere method: Application for additive manufacturing, in: AIP Conference Proceedings, American Institute of Physics, 2013: pp. 185–188. doi:10.1063/1.4811898.

[40] C.D. Boley, S.A. Khairallah, A.M. Rubenchik, Calculation of laser absorption by metal powders in additive manufacturing, Applied Optics. 54 (2015) 2477. doi:10.1364/ao.54.002477.

[41] C. Körner, A. Bauereiß, E. Attar, Fundamental consolidation mechanisms during selective beam melting of powders, Modelling and Simulation in Materials Science and Engineering. 21 (2013). doi:10.1088/0965-0393/21/8/085011.

[42] H.E. Cline, T.R. Anthony, Heat treating and melting material with a scanning laser or electron beam, Journal of Applied Physics. 48 (1977) 3895–3900. doi:10.1063/1.324261.

[43] S.S. Sih, J.W. Barlow, The Prediction of the Thermal Conductivity of Powders, Proceedings of the Solid Freeform Fabrication Symposium. 22 (1994) 397–401. doi:10.1080/02726350490501682a.

[44] Sih, S. S., & Barlow, J. W. (1995). Emissivity of powder beds. In 1995 International Solid Freeform Fabrication Symposium.

[45] I. Sumirat, Y. Ando, S. Shimamura, Theoretical consideration of the effect of porosity on thermal conductivity of porous materials, Journal of Porous Materials. 13 (2006) 439–443. doi:10.1007/s10934-006-8043-0.

[46] German, R. M., Particle packing characteristics, Princeton, N.J. : Metal Powder Industries Federation, Princeton, N.J, 1989.

[47] Q.B. Nguyen, M.L.S. Nai, Z. Zhu, C.N. Sun, J. Wei, W. Zhou, Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing, Engineering. 3 (2017) 695–700. doi:10.1016/J.ENG.2017.05.012.

[48] D.R. Askeland, W.J. Wright, Essentials of materials science and engineering, fourth ed., Cengage Learning, Boston, 2018.

[49] T. Magnusson, L. Arnberg, Density and solidification shrinkage of hypoeutectic aluminumsilicon alloys, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 32 (2001) 2605–2613. doi:10.1007/s11661-001-0050-9.

[50] P.K. Galenko, E. V Abramova, D. Jou, D.A. Danilov, V.G. Lebedev, D.M. Herlach, Solute trapping in rapid solidification of a binary dilute system: A phase-field study, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 84 (2011) 41143. doi:10.1103/PhysRevE.84.041143.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る