リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on Anti-MUC1 Monoclonal Antibody for Precise Recognition of Glycopeptidic Neoantigen: Approach from Epitope Defined Strategy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on Anti-MUC1 Monoclonal Antibody for Precise Recognition of Glycopeptidic Neoantigen: Approach from Epitope Defined Strategy

涌井, 初 北海道大学

2021.03.25

概要

Aberrantly glycosylated MUC1 is overexpressed in many types of cancer cells. Hence, numerous anti-MUC1 antibodies have been produced as candidates for diagnostic and therapeutic agents. However, most of them do not have specificity for particular sugar chain structures, although glycan structure is strongly related to disease states. Therefore, glycan-specific anti-MUC1 mAb has been needed. Recently, our group obtained a novel glycan-specific anti-MUC1 antibody (SN-101) using a homogeneous synthetic MUC1 glycopeptide containing a disease-related Tn antigen epitope. In this study, I revealed the binding structure and essential epitope of a novel anti-MUC1 mAb SN-101, with X-ray structural analysis and glycopeptide microarray. SN-101 showed high specificity to MUC1 glycopeptide bearing Tn antigen, compared with the conventional antibodies and, the mAb directly recognizes glycan moiety. Furthermore, it shows a unique binding profile, that SN-101 is possible to distinguish sugar modification in the VTSA region and glycopeptide conformation within the SN-101 is very similar to reported NMR data of MUC1 glycopeptide. Herein, I demonstrated the importance of direct recognition toward glycan moiety and the availability of the new strategy to obtain antibodies that have high glycan specificity. SN-101 antibody is a new type of antibody whose target epitope has been designed beforehand. By using the antibody, it may be possible not only to understand at the molecular level of the disease-specific antigen but also to develop a highly accurate diagnosis, quantitative analysis and highly targeted antibody drugs.

この論文で使われている画像

参考文献

Chapter 1

1. Schjoldager, K.T., Narimatsu, Y., Joshi, H.J. et al. Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 2020, 21, 729–749

2. Nath, S. & Mukherjee, P. MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends in Molecular Medicine 2014, 20, 332–342 .

3. C.R. Shurer, J.C. Kuo, L.M. Roberts, J.G. Gandhi, M.J. Colville, T.A. Enoki, H. Pan, J. Su, J.M. Noble, M.J. Hollander, et al. Physical principles of membrane shape regulation by the glycocalyx Cell 2019, 177, 1757-1770

4. Kesimer, M., Ehre, C., Burns, K. et al. Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways. Mucosal Immunol 2013, 6, 379–392

5. Ju, T., Wang, Y., Aryal, R.P., Lehoux, S.D., Ding, X., Kudelka, M.R., Cutler, C., Zeng, J., Wang, J., Sun, X., Heimburg‐Molinaro, J., Smith, D.F. and Cummings, R.D. Tn and sialyl‐Tn antigens, aberrant O‐glycomics as human disease markers. Prot. Clin. Appl. 2013, 7, 618-631.

6. Pedersen, J.W., et al., Cancer‐associated autoantibodies to MUC1 and MUC4—A blinded case–control study of colorectal cancer in UK collaborative trial of ovarian cancer screening. Int. J. Cancer, 2014, 134: 2180-2188.

7. Mona Pourjafar, Pouria Samadi, and Massoud Saidijam, MUC1 antibody- based therapeutics: the promise of cancer immunotherapy Immunotherapy 2020, 12, 17, 1269-1286

8. Safi, F., Kohler, I., Beger, H.‐G. and Röttinger, E. (1991The value of the tumor marker CA 15‐3 in diagnosing and monitoring breast cancer. A comparative study with carcinoembryonic antigen. Cancer, 1991 68: 574-582.

9. Storr, S. J.; Royle, L.; Chapman, C. J.; Hamid, U. M. A.; Robertson, J. F.; Murray, A.; Dwek, R. A.; Rudd, P. M. The O-linked glycosylation of secretory/shed MUC1 from an advanced breast cancer patient’s serum Glycobiology 2008, 18, 456– 462

10. Kohno N, Kyoizumi S, Awaya Y, Fukuhara H, Yamakido M, Akiyama M. New serum indicator of interstitial pneumonitis activity. Sialylated carbohydrate antigen KL-6. Chest 1989 96: 68-73,

11. Einhorn N, Sjövall K, Knapp RC, et al. Prospective evaluation of serum CA 125 levels for early detection of ovarian cancer. Obstetrics and Gynecology. 1992, 80, 1, 14-18.

12. Beatson, R., Tajadura-Ortega, V., Achkova, D. et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol., 2016, 17, 1273–1281.

13. Tachibana, Y., Fletcher, G.L., Fujitani, N., Tsuda, S., Monde, K. and Nishimura, S.‐I., Antifreeze Glycoproteins: Elucidation of the Structural Motifs That Are Essential for Anti-freeze Activity. Angewandte Chemie International Edition, 2004, 43, 856-862.

14. Ohyabu, N. et al. An essential epitope of anti-MUC1 monoclonal antibody KL-6 revealed by focused glycopeptide library. J Am Chem Soc. 2016, 131, 17102–17109

15. Takahiko Matsushita, Naoki Ohyabu, Naoki Fujitani, Kentaro Naruchi, Hiroki Shimizu, Hiroshi Hinou, and Shin-Ichiro Nishimura. Site-Specific Conformational Alteration Induced by Sialylation of MUC1 Tandem Repeating Glycopeptides at an Epitope Region for the Anti-KL-6 Monoclonal Antibody. Biochemistry 2013, 52, 2, 402-414.

16. Takahiko Matsushita, Wataru Takada, Kota Igarashi, Kentaro Naruchi, Risho Miyoshi, Fayna Garcia-Martin, Maho Amano, Hiroshi Hinou, Shin-Ichiro Nishimura. A straightforward protocol for the preparation of high performance microarray displaying synthetic MUC1 glycopeptides. Biochimica et Biophysica Acta (BBA) - General Subjects 2014, 1840, 3, 1105-1116.

17. Shobith Rangappa, Gerard Artigas, Risho Miyoshi, Yasuhiro Yokoi, Shun Hayakawa, Fayna Garcia-Martin, Hiroshi Hinou, Shin-Ichiro Nishimura. Effects of the multiple O-glycosylation states on antibody recognition of the immunodominant motif in MUC1 extra-cellular tandem repeats. MedChemComm 2016, 7, 6, 1102-1122.

18. The challenges of glycan recognition with natural and artificial receptors’ by Stefano Tommasone et al., Chem. Soc. Rev., 2019, 48 , 5488–5505.

19. Manimala, J. C., Roach, T. A., Li, Z. & Gildersleeve, J. C. High-throughput carbohydrate microarray analysis of 24 lectins. Angew. Chem. Int Ed. Engl. 2006 45, 3607–3610.

20. Kailemia, M.J., Park, D. & Lebrilla, C.B. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017, 409, 395–410

21. Tsumoto, K. Drug Delivery System, 抗体開発のための抗原抗体相互作用解析, 2013年28巻5号 p. 412-423

22. Shoichi Naito, Tatsuya Takahashi, Junji Onoda, Shoko Uemura, Naoki Ohyabu, Hiroshi Takemoto, Shoji Yamane, Ikuo Fujii, Shin-Ichiro Nishimura, and Yoshito Numata . Generation of Novel Anti-MUC1 Monoclonal Antibodies with Designed Carbohydrate Specificities Using MUC1 Glycopeptide Library. ACS Omega 2017, 2, 11 , 7493-7505.

23. Sado, Y. et al., Lymphocytes from enlarged iliac lymph nodes as fusion partners for the production of monoclonal antibodies after a single tail base immunization attempt. Acta Histochem. Cytochem. 2006, 39, 89-94.

Chapter 2

1. Nath, N.; Mukherjee, P. MUC1: A multifaceted oncoprotein with a key role in cancerprogression. Trends in Mol. Med. 2014, 20, 332–342.

2. Kudelka, M. R. et al., Simple sugars to complex disease: Mucin-type O- glycans in cancer. Adv. Cancer Res. 2015, 126, 53-135.

3. Hollingsworth M. A.; Swanson, B. J. Mucins in cancer: Protection and control of the cell surface. Nat. Rev. Cancer 2004, 4, 45-60.

4. Hattrup, C. L.; Gendler, S. J. Structure and function of the cell surface mucins. Annu. Rev. Physiol. 2007, 70, 431-457.

5. Kufe, D. W. Mucins in cancer: Function, prognosis and therapy. Nat. Rev. Cancer 2009, 9, 874-885.

6. Price, M. R. et al., ISOBM TD-4 International workshop on monoclonal antibodies against MUC1. Tumor Biol. 1998, 19, 1-152.

7. Karsten, U. et al., Binding patterns of DTR-specific antibodies reveal a glycosylationconditioned tumor-specific epitope of the epithelial mucin (MUC1). Glycobiology 2004, 14, 681-692.

8. Danielezyk, A. et al., PankoMab: A potent new generation anti-tumour MUC1 antibody. Cancer Immunol. Immunother. 2006, 55, 1337-1347.

9. Springer, G. F. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J. Mol. Med. 1997, 75, 594-602.

10. Matsushita, T. et al., A straightforward protocol for the prepara-tion of highperformance microarray displaying synthetic MUC1 glycopeptides. Biochim. Biophys.Acta 2014, 1840, 1105-1116.

11. Rangappa, S. et al., Effects of the multiple O-glycosylation states on antibody recognition of the immunodominant motif in MUC1 extra- cellular tandem repeats. Med. Chem. Commun. 2016, 7, 1102-1122.

12. Martínez-Sáez, N. et al., Deciphering the non-equivalence of serine and threonine Oglycosylation points: Implications for molecular recognition of the Tn antigen by an antiMUC1 antibody. Angew. Chem. Int. Ed. 2015, 54, 9830-9834.

13. Movahedin, M. et al., Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology 2017, 27, 677-687.

14. Ishikawa, N. et al., Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir. Invest. 2012, 50, 3-13.

15. Ohyabu, N. et al., An essential epitope of anti-MUC1 monoclonal antibody KL-6 revealed by focused glycopeptide library. J. Am. Chem. Soc. 2009, 131, 17102-17109.

16. Matsushita, T. et al., Site-specific conformational alteration induced by sialylation of MUC1 tandem repeating glycopeptides at an epitope region for the anti-KL-6 monoclonal antibody. Biochemistry 2013, 52, 402-414.

17. Tanaka, S. et al., Krebs von den Lungen-6 (KL-6) is a prognostic biomarker in patients with surgically resected non-small cell lung cancer, Int. J. Cancer 2012, 130, 377-387.

18. Matsushita, T., et al., Rapid microwave-assisted solid-phase glycopeptide synthesis. Org. Lett. 2005, 7, 877–880.

19. Fumoto, M. et al., Combinatorial synthesis of MUC1 glycopeptides: Polymer blotting facilitates chemical and enzymatic synthesis of highly complicated mucin glycopeptides. J. Am. Chem. Soc. 2005, 127, 11804- 11818.

20. Matsushita, T. et al., Construction of highly glycosylated mucin-type glycopeptides based on microwave-assisted solid-phase syntheses and enzymatic modifications. J. Org.Chem. 2006, 71, 3051-3063.

21. Dokurno, P. et al., Crystal structure at 1.95 Å resolution of the breast tumour-specific antibody SM3 complexed with its peptide epitope reveals novel hypervariable loop recognition. J. Mol. Biol. 1998, 284, 713-728.

22. Möller, H. et al., NMR-based determination of the binding epitope and conformational analysis of MUC1 glycopeptides and peptides bound to the breast cancerselective monoclonal antibody SM3. Eur. J. Biochem. 2002, 269, 1444-1455.

23. Schuman, J. et al., Probing the conformational and dynamical effects of Oglycosylation within the immunodominant region of a MUC1 peptide tumor antigen. J.Peptide Res. 2003, 61, 91-108.

24. Kinarsky, L. et al., Conformational studies on the MUC1 tandem repeat glycopeptides: Implication for the enzymatic O-glycosylation of the mucin protein core. Glycobiology 2003, 13, 929-939.

25. Naito, S. et al., Generation of novel anti-MUC1 monoclonal antibodies with designed carbohydrate specificities using MUC1 glycopeptide library. ACS Omega 2017, 2, 7493-7505.

26. Cheever, M. A. et al., The prioritization of cancer antigens: A National Cancer Institute pilot project for the acceleration of translational research. Clin. Cancer Res. 2009, 15, 5323-5337.

27. Farouk, S. et al., The value of the tumor marker CA 15-3 in diagnosing and monitoring breast cancer. Cancer 1991, 68, 574-582.

28. Curry, J. M. et al., The use of novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer. J. Surg. Oncol. 2013, 107, 713-722.

29. Brinkman Van der Linden, E. C. M.; Varki, A. New aspect of siglec binding specificities, including the significance of fucosylation and of the sialyl- Tn epitope. J. Biol. Chem. 2000, 275, 8625-8632.

30. Napoletano, C. et al., Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells. Cancer Res. 2007, 67, 8358-8367.

31. Swanson, B. J. et al., MUC1 is a counter-receptor for myelin-associated glycoprotein (siglec-4a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion. Cancer Res. 2007, 67, 10222-10229.

32. Zhao, Q., et al., Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res. 2009, 69, 6799- 6806.

33. Beatson, R. et al., The breast cancer-associated glycoforms of MUC1, MUC1-Tn and sialyl-Tn, are expressed in COSMC wild-type cells and bind the C-type lectin MGL. PLOS ONE 2015, 10, e0125994.

34. Beatson, R. et al., The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin siglec-9. Nat. Immunol. 2016, 17, 1273-1281.

35. Brooks, C. L. et al., Antibody recognition of a unique tumor-specific glycopeptide antigen. Proc. Natl. Acad. Sci. 2010, 107, 10056-10061.

36. Hakomori, S. -i. Tumor-associated carbohydrate antigens defining tumor malignancy: Basis for development of anti-cancer vaccines. Adv. Exp. Med. Biol. 2001, 491, 369-402.

37. Descrichard, A. et al., Cancer neoantigens and applications for immunotherapy. Clin. Cancer Res. 2015, 22, 807-812.

38. Malaker, S. A. et al., Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol. Res. 2017, 5, 376- 384.

39. Slawson C.; Hart, G. W. O-GlcNAc signaling: Implications for cancer cell biology. Nat. Rev. Cancer 2011, 11, 678-684.

40. Belenky AS, Wask-Rotter E, Sommer MJ. Absence of protein G-Fc interaction in ficin-derived mouse IgG1 digests. J Immunoassay Immunochem. 2003, 3, 24, 311-318.

41. Kabsch, W. Xds. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 125–132.

42. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007,40, 658–674.

43. Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 213–221.

44. Emsley P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004, 60, 2126–2132.

45. Chen, V. B. et al. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 12–21.

Chapter 3

1. Nath, N.; Mukherjee, P. MUC1: A multifaceted oncoprotein with a key role in cancerprogression. Trends in Mol. Med. 2014, 20, 332–342.

2. Kudelka, M. R. et al., Simple sugars to complex disease: Mucin-type O- glycans in cancer. Adv. Cancer Res. 2015, 126, 53-135.

3. Bose, M.; Mukherjee, P. Potential of Anti-MUC1 Antibodies as a Targeted Therapy for Gastrointestinal Cancers. Vaccines 2020, 8, 659.

4. J. Ledermann, J. A. Zurlo et al, LBA41 - A double-blind, placebo- controlled, randomized, phase 2 study to evaluate the efficacy and safety of switch maintenance therapy with the anti-TA-MUC1 antibody PankoMab-GEX after chemotherapy in patients with recurrent epithelial ovarian carcinoma, Annals of Oncology, 2017, 28, 626

5. Puregmaa Khongorzul, Cai Jia Ling, Farhan Ullah Khan, Awais Ullah Ihsan and Juan Zhang, Antibody–Drug Conjugates: A Comprehensive Review, Mol Cancer Res, 2020, 18, 1

6. Rafiq, S., et al., Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2020 17, 147–167

7. Céline Nicolazzi et al., An Antibody–Drug Conjugate Targeting MUC1- Associated Carbohydrate CA6 Shows Promising Antitumor Activities, Mol Cancer Ther, 2020, 19, 8 1660-1669

8. Avery D. Posey, et al., Engineered CAR T Cells Targeting the Cancer- Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma, Immunity, 2016, 6, 44

9. Beatson, R., Tajadura-Ortega, V., Achkova, D. et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol., 2016, 17, 1273–1281.

10. Mehla K, et al., Combination of mAb-AR20.5, anti-PD-L1 and PolyICLC inhibits tumor progression and prolongs survival of MUC1.Tg mice challenged with pancreatic tumors. Cancer Immunol Immunother. 2018, 67, 3, 445-457.

11. Martínez-Sáez, N. et al., Deciphering the non-equivalence of serine and threonine Oglycosylation points: Implications for molecular recognition of the Tn antigen by an antiMUC1 antibody. Angew. Chem. Int. Ed. 2015, 54, 9830-9834.

12. Movahedin, M. et al., Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology 2017, 27, 677-687.

13. Macías-León J, et al., Structural characterization of an unprecedented lectin-like antitumoral anti-MUC1 antibody. Chem Commun 2020 in press

14. C.E. Wagner, K.M. Wheeler, K. Ribbeck, Mucins and Their Role in Shaping the Functions of Mucus Barriers Annual Review of Cell and Developmental Biology 2018, 34, 1, 189-215

15. Reily, C., Stewart, T.J., Renfrow, M.B. et al. Glycosylation in health and disease. Nat Rev Nephrol 2019, 15, 346–366

16. Lorenzo Casalino, et al., Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein ACS Cent. Sci. 2020, 6, 10, 1722–1734

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る