リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of a 1:1-binding biparatopic anti-TNFR2 antagonist by reducing signaling activity through epitope selection」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of a 1:1-binding biparatopic anti-TNFR2 antagonist by reducing signaling activity through epitope selection

Akiba, Hiroki Fujita, Junso Ise, Tomoko Nishiyama, Kentaro Miyata, Tomoko Kato, Takayuki Namba, Keiichi Ohno, Hiroaki Kamada, Haruhiko Nagata, Satoshi Tsumoto, Kouhei 京都大学 DOI:10.1038/s42003-023-05326-8

2023.09.27

概要

Conventional bivalent antibodies against cell surface receptors often initiate unwanted signal transduction by crosslinking two antigen molecules. Biparatopic antibodies (BpAbs) bind to two different epitopes on the same antigen, thus altering crosslinking ability. In this study, we develop BpAbs against tumor necrosis factor receptor 2 (TNFR2), which is an attractive immune checkpoint target. Using different pairs of antibody variable regions specific to topographically distinct TNFR2 epitopes, we successfully regulate the size of BpAb–TNFR2 immunocomplexes to result in controlled agonistic activities. Our series of results indicate that the relative positions of the two epitopes recognized by the BpAb are critical for controlling its signaling activity. One particular antagonist, Bp109-92, binds TNFR2 in a 1:1 manner without unwanted signal transduction, and its structural basis is determined using cryo-electron microscopy. This antagonist suppresses the proliferation of regulatory T cells expressing TNFR2. Therefore, the BpAb format would be useful in designing specific and distinct antibody functions.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Vanamee, É. S. & Faustman, D. L. Structural principles of tumor necrosis

factor superfamily signaling. Sci. Signal. 11, eaao4910 (2018).

Vanamee, E. S. & Faustman, D. L. On the TRAIL of better therapies:

understanding TNFRSF structure-function. Cells 9, 764 (2020).

Wajant, H. Principles of antibody-mediated TNF receptor activation. Cell

Death Differ. 22, 1727–1741 (2015).

Mukai, Y. et al. Solution of the structure of the TNF-TNFR2 complex. Sci.

Signal. 3, ra83–ra83 (2010).

Wang, J. et al. TNFR2 ligation in human T regulatory cells enhances IL2induced cell proliferation through the non-canonical NF-κB pathway. Sci. Rep.

8, 12079 (2018).

Ward-Kavanagh, L. K., Lin, W. W., Šedý, J. R. & Ware, C. F. The TNF

receptor superfamily in co-stimulating and co-inhibitory responses. Immunity

44, 1005–1019 (2016).

Chen, X. & Oppenheim, J. J. The phenotypic and functional consequences of

tumour necrosis factor receptor type 2 expression on CD4+ FoxP3+

regulatory T cells. Immunology 133, 426–433 (2011).

Chen, X. et al. TNFR2 is critical for the stabilization of the CD4+Foxp3+

regulatory T cell phenotype in the inflammatory environment. J. Immunol.

190, 1076–1084 (2013).

Bai, J., Ding, B. & Li, H. Targeting TNFR2 in cancer: all roads lead to Rome.

Front. Immunol. 13, 844931 (2022).

Medler, J., Kucka, K. & Wajant, H. Tumor necrosis factor Receptor 2

(TNFR2): an emerging target in cancer therapy. Cancers 14, https://doi.org/10.

3390/cancers14112603 (2022).

Torrey, H. et al. Targeting TNFR2 with antagonistic antibodies inhibits

proliferation of ovarian cancer cells and tumor-associated Tregs. Sci. Signal.

10, eaaf8608 (2017).

Yang, M. et al. Optimizing TNFR2 antagonism for immunotherapy with

tumor microenvironment specificity. J. Leukoc. Biol. 107, 971–980

(2020).

Chen, Y., Jia, M., Wang, S., Xu, S. & He, N. Antagonistic antibody targeting

TNFR2 inhibits regulatory T cell function to promote anti-tumor activity.

Front. Immunol. 13, 835690 (2022).

Faustman, D. & Davis, M. TNF receptor 2 pathway: drug target for

autoimmune diseases. Nat. Rev. Drug Discov. 9, 482–493 (2010).

Inoue, M. et al. Characterization of a TNFR2-selective agonistic TNF-α

mutant and its derivatives as an optimal regulatory T cell expander. J.

Immunol. 206, 1740–1751 (2021).

Okubo, Y., Torrey, H., Butterworth, J., Zheng, H. & Faustman, D. L. Treg

activation defect in type 1 diabetes: correction with TNFR2 agonism. Clin.

Transl. Immunol. 5, e56 (2016).

Carter, P. J. & Lazar, G. A. Next generation antibody drugs: pursuit of the

‘high-hanging fruit’. Nat. Rev. Drug Discov. 17, 197–223 (2018).

ARTICLE

18. Fischer, R., Kontermann, R. E. & Pfizenmaier, K. Selective targeting of TNF

receptors as a novel therapeutic approach. Front. Cell Dev. Biol. 8, 401 (2020).

19. Richter, F. et al. Monovalent TNF receptor 1-selective antibody with improved

affinity and neutralizing activity. MAbs 11, 166–177 (2019).

20. Akiba, H. & Tsumoto, K. Development and activities, including

immunocomplex formation, of biparatopic antibodies and alternative scaffold

proteins. Transl. Regul. Sci. 2, 1–6 (2020).

21. Oostindie, S. C., Lazar, G. A., Schuurman, J. & Parren, P. W. H. I. Avidity in

antibody effector functions and biotherapeutic drug design. Nat. Rev. Drug

Discov. 21, 715–735 (2022).

22. Kondo, H. et al. Method for creating same and utilization thereof. Patent

application publication. WO/2018/092907 (2018).

23. Yu, X. et al. Reducing affinity as a strategy to boost immunomodulatory

antibody agonism. Nature 614, 539–547 (2023).

24. Kast, F. et al. Engineering an anti-HER2 biparatopic antibody with a

multimodal mechanism of action. Nat. Commun. 12, 3790 (2021).

25. Yang, Y. et al. Tetravalent biepitopic targeting enables intrinsic antibody

agonism of tumor necrosis factor receptor superfamily members. MAbs 11,

996–1011 (2019).

26. Li, J. Y. et al. A biparatopic HER2-targeting antibody-drug conjugate induces

tumor regression in primary models refractory to or ineligible for HER2targeted therapy. Cancer Cell 29, 117–129 (2016).

27. Andres, F. et al. Inhibition of the MET kinase activity and cell growth in METaddicted cancer cells by bi-paratopic linking. J. Mol. Biol. 431, 2020–2039

(2019).

28. Stefano, J. E. et al. A highly potent CD73 biparatopic antibody blocks

organization of the enzyme active site through dual mechanisms. J. Biol.

Chem. 295, 18379–18389 (2020).

29. Merchant, M. et al. Monovalent antibody design and mechanism of action of

Onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic

agent. Proc. Natl Acad. Sci. USA 110, E2987–E2996 (2013).

30. Richter, F. et al. Antagonistic TNF receptor one-specific antibody

(ATROSAB): receptor binding and in vitro bioactivity. PLOS ONE 8, e72156

(2013).

31. Richter, F., Seifert, O., Herrmann, A., Pfizenmaier, K. & Kontermann, R. E.

Improved monovalent TNF receptor 1-selective inhibitor with novel

heterodimerizing Fc. MAbs 11, 653–665 (2019).

32. De Gasparo, R. et al. Bispecific IgG neutralizes SARS-CoV-2 variants and

prevents escape in mice. Nature 593, 424–428 (2021).

33. Galimidi, R. P. et al. Intra-spike crosslinking overcomes antibody evasion by

HIV-1. Cell 160, 433–446 (2015).

34. Croft, M., Benedict, C. A. & Ware, C. F. Clinical targeting of the TNF and

TNFR superfamilies. Nat. Rev. Drug Discov. 12, 147–168 (2013).

35. Jost, C. et al. Structural basis for eliciting a cytotoxic effect in HER2overexpressing cancer cells via binding to the extracellular domain of HER2.

Structure 21, 1979–1991 (2013).

36. Tamaskovic, R. et al. Intermolecular biparatopic trapping of ErbB2 prevents

compensatory activation of PI3K/AKT via RAS-p110 crosstalk. Nat. Commun.

7, 11672 (2016).

37. DaSilva, J. O. et al. A biparatopic antibody that modulates MET trafficking

exhibits enhanced efficacy compared with parental antibodies in MET-driven

tumor models. Clin. Cancer Res. 26, 1408–1419 (2020).

38. Akiba, H. et al. Production of IgG1-based bispecific antibody without extra

cysteine residue via intein-mediated protein trans-splicing. Sci. Rep. 11, 19411

(2021).

39. Onda, M. et al. Characterization of the B cell epitopes associated with a

truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins

for the treatment of cancer patients. J. Immunol. 177, 8822–8834 (2006).

40. Nagata, S. et al. Rapid grouping of monoclonal antibodies based on their

topographical epitopes by a label-free competitive immunoassay. J. Immunol.

Methods 292, 141–155 (2004).

41. Akiba, H., Satoh, R., Nagata, S. & Tsumoto, K. Effect of allotypic variation of

human IgG1 on the thermal stability of disulfide-linked knobs-into-holes

mutants of the Fc for stable bispecific antibody design. Antib. Ther. 2, 65–69

(2019).

42. Akiba, H., Tamura, H., Caaveiro, J. M. M. & Tsumoto, K. Computer-guided

library generation applied to the optimization of single-domain antibodies.

Protein Eng. Des. Sel. 32, 423–431 (2019).

43. Young, G. et al. Quantitative mass imaging of single biological

macromolecules. Science 360, 423–427 (2018).

44. Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools

for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J.

478, 4169–4185 (2021).

45. Mastronarde, D. N. Automated electron microscope tomography using robust

prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

46. Yonekura, K., Maki-Yonekura, S., Naitow, H., Hamaguchi, T. & Takaba, K.

Machine learning-based real-time object locator/evaluator for cryo-EM data

collection. Commun. Biol. 4, 1044 (2021).

COMMUNICATIONS BIOLOGY | (2023)6:987 | https://doi.org/10.1038/s42003-023-05326-8 | www.nature.com/commsbio

11

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05326-8

47. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC:

algorithms for rapid unsupervised cryo-EM structure determination. Nat.

Methods 14, 290–296 (2017).

48. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive

regularization improves single-particle cryo-EM reconstruction. Nat. Methods

17, 1214–1221 (2020).

49. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein

structures and complexes. Nucleic Acids Res 46, W296–W303 (2018).

50. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory

research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

51. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development

of coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

52. Adams, P. D. et al. Phenix: a comprehensive Python-based system for

macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66,

213–221 (2010).

53. Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S. & Kluger, Y.

Fast interpolation-based t-SNE for improved visualization of single-cell RNAseq data. Nat. Methods 16, 243–245 (2019).

H.A., S.N., and K.T. filed a patent related to the described biparatopic antibodies

(WO2021200840). H.K. and S.N. are co-founders of Epitope Science Co., Ltd. The other

authors have no conflicts of interest to declare.

Additional information

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s42003-023-05326-8.

Correspondence and requests for materials should be addressed to Hiroki Akiba, Satoshi

Nagata or Kouhei Tsumoto.

Peer review information Communications Biology thanks the anonymous reviewers for

their contribution to the peer review of this work. Primary Handling Editor: Gene

Chong.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Acknowledgements

The authors thank Reiko Satoh and Mayumi Niiyama for their technical assistance with

protein production, Dr. Yasuhiro Abe, Akiko Abe, Takahide Mori, Miho Mukai, and

Sayuri Okamoto for their assistance with the production of antibody panels, and Dr.

Kohei Shiba for assistance with mass photometry. This study was supported partially by

Japan Agency for Medical Research and Development (AMED) grant numbers

JP22ak0101099 (H.A. and H.K.), JP21am0101117 (K.Na.), JP22ama121003 (K.Na.),

JP17pc0101020 (K.Na.), Japan Science and Technology Agency (JST) grant number

JPMJOP1861 (KNa), Japan Society for the Promotion of Science (JSPS) grant numbers

JP21K06453 (H.A.), JP20K22630 (J.F.), Kyoto University Foundation (H.A.), Takeda

Science Foundation (H.A.), and JEOL YOKOGUSHI Research Alliance Laboratory of

Osaka University (K.Na.).

Author contributions

Conceptualization: H.A., H.K., S.N., K.T.; Investigation: H.A., T.I., J.F., K.Ni., T.M., T.K.,

S.N.; Funding acquisition: H.A., J.F., K.Na., H.K.; Writing—original draft: H.A., J.F., S.N.;

Writing—review and editing: T.K., K.Na., H.O., H.K., K.T.

12

Competing interests

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons licence and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

COMMUNICATIONS BIOLOGY | (2023)6:987 | https://doi.org/10.1038/s42003-023-05326-8 | www.nature.com/commsbio

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る