リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on potential role of nonneutralizing IgA antibodies in cross-protective immunity against influenza A viruses」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on potential role of nonneutralizing IgA antibodies in cross-protective immunity against influenza A viruses

奥谷, 公亮 北海道大学

2021.03.25

概要

A型インフルエンザウイルス(IAV)は、ヘマグルチニン(HA)、ノイラミニダーゼ(NA)およびマトリックス2(M2)タンパク質を粒子表面にもつ。HAおよびNAは抗原性の違いからそれぞれ複数の亜型に分類される。一方、M2タンパク質は、HAおよびNA亜型に関わらずウイルス株間で抗原性が高く保存されている。HAはIAVの標的細胞表面への結合および細胞侵入を担っており、NAは感染細胞からIAVが放出される際に重要な機能を持っている。M2タンパク質は、イオンチャネルとしてIAVの細胞侵入に働くだけでなく、感染細胞外への出芽過程にも重要な役割を担うことが分かっている。

 HAはウイルスの細胞侵入に必須であるため、中和抗体の標的である。しかし、大部分の中和抗体はHA亜型特異的であり、複数の亜型のウイルス株に対して中和活性を示す抗HA抗体は限られている。一方、粘膜面に分泌されるIgA抗体はIgG抗体よりも亜型間交差反応性が高く、IAVに対する感染防御に重要であると考えられている。しかし、複数の亜型のIAVに対してIgA抗体が抗ウイルス作用を示す機序は未だ不明である。本学位論文では、非中和抗体に着目し、幅広い亜型のウイルスに交差反応性を示すHAおよびM2特異的モノクローナル抗体を用いて、様々なウイルス株に対する抗ウイルス活性をIgG抗体とIgA抗体との間で比較解析した。

 第一章では、HA特異的抗体による抗ウイルス活性を調べた。複数の異なる亜型のHAに結合能を有するマウスモノクローナル抗体5A5の可変領域の遺伝子配列を基に、ヒトIgGおよびIgA抗体発現プラスミドを用いて、同じエピトープを持つヒト―マウスキメラIgGおよびIgA抗体を作出した。IgA抗体は多量体を形成するため、ゲル濾過クロマトグラフィーにより単量体IgAおよび多量体IgA抗体の2つに分画した。各抗体存在下で、IAVA/Puerto Rico/8/1934(H1N1)(PR8)、A/Adachi/2/1957(H2N2)(Ad2)、A/Hong Kong/483/1997(H5N1)(HK483)、A/shearwater/South Australia/1/1972(H6N5)(SA1)、A/duck/England/1/1956(H11N6)(Eng1)およびA/duck/Alberta/60/1976(H12N5)(Alb60)株を感染させた培養細胞の上清中に含まれるウイルスタンパク質およびウイルス遺伝子を定量した。その結果、IgGおよび単量体IgA抗体存在下と比較して、多量体IgA抗体存在下ではPR8、HK483、SA1、Eng1およびAlb60株に感染させた細胞上清中のウイルスタンパク質および遺伝子量が有意に減少する事が分かった。IgA抗体存在下では、感染細胞表面にウイルス粒子が集積している像が電子顕微鏡でみられ、単量体IgA抗体と比較して多量体IgA抗体でより強く集積していた。さらに、ウイルス増殖の指標であるプラーク形成能に及ぼす影響を抗体間で比較したところ、多量体IgA抗体存在下ではPR8、HK483、SA1、Eng1およびAlb60のプラークサイズが顕著に減少した。また、作出したIgGおよびIgA抗体はIAVのNA活性を阻害しないことを確認した。以上の結果から、多量体IgA抗体は、非中和抗体であっても、ウイルス粒子および感染細胞表面上に存在するHAに結合し架橋することでウイルス粒子が細胞から遊離する過程を阻害する事が示唆された。

 第二章では、M2特異的抗体による抗ウイルス活性をIgGおよびIgA抗体間で比較解析した。先行研究から、M2タンパク質に結合するマウスモノクローナル抗体 rM2ss23 (IgG)は、 Ad2 および A/Aichi/2/1968 (H3N2) (Aichi) に結合し、細胞侵入阻害による中和活性は示さないものの、これらのウイルスのプラークサイズを小さくさせることが分かっていた。そこで、第一章同様にrM2ss23と同じエピトープを持つヒト―マウスキメラIgGおよびIgA抗体を作出し、出芽阻害活性を比較解析した。IgA抗体は多量体を形成するため、ゲル濾過クロマトグラフィーにより単量体IgA、二量体IgA、三・四量体IgAの3つに分画した。プラーク形成能に及ぼす影響をこれらの抗体間で比較したところ、三・四量体IgA抗体存在下では、Ad2およびAichiのプラークサイズがIgG抗体存在下と比較して有意に縮小した。また、感染細胞の上清中に含まれるウイルスタンパク質量およびウイルス遺伝子量は、三・四量体IgA抗体存在下でIgGおよび単量体IgAと比較して有意に減少した。各抗体存在下における感染細胞を電子顕微鏡で観察したところ、ウイルス粒子が集積している像は見られなかった。以上のことから、M2特異的IgA抗体は、ウイルスの出芽過程自体を効率よく阻害することで抗ウイルス活性を示す可能性が示唆された。

 本研究により、IAVに対する非中和IgA抗体が抗ウイルス活性を発揮するメカニズムの一端が明らかになった。本研究の結果から、粘膜免疫の誘導によって産生される、複数の亜型のIAVに対して交差反応性を有する非中和p-IgA抗体は、IAVの出芽過程を阻害することで亜型間交差感染防御免疫に関与する可能性が示唆された。今後、p-IgA抗体の生体内での機能を解析することによって、亜型に制限されない感染防御免疫の誘導法の開発につながると考えられる。そのようなワクチンが実現すれば、将来出現する新型インフルエンザウイルスにも効果が期待される。

この論文で使われている画像

参考文献

1. Adler-Moore, J. P., W. Ernst, H. Kim, N. Ward, S. M. Chiang, T. Do, and G. Fujii. 2017. Monomeric M2e antigen in VesiVax((R)) liposomes stimulates protection against type a strains of influenza comparable to liposomes with multimeric forms of M2e. J Liposome Res 27:210-220.

2. Brandtzaeg, P. 1974. Presence of J chain in human immunocytes containing various immunoglobulin classes. Nature 252:418-420.A. Calder, L. J., S. Wasilewski, J. A. Berriman, and P. B. Rosenthal. 2010. Structural organization of a filamentous influenza A virus. Pro Natl Acad Sci U S A.107:10685-10690.

3. Cate, T. R., Y. Rayford, D. Nino, P. Winokur, R. Brady, R. Belshe, W. Chen, R. L. Atmar, and R. B. Couch. 2010. A high dosage influenza vaccine induced significantly more neuraminidase antibody than standard vaccine among elderly subjects. Vaccine 28:2076-2079.

4. Caton, A. J., G. G. Brownlee, J. W. Yewdell, and W. Gerhard. 1982. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31:417-427.

5. Chen, B. J., G. P. Leser, D. Jackson, and R. A. Lamb. 2008. The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J Virol. 82:10059-10070.

6. Chen, Y. Q., L. Y. Lan, M. Huang, C. Henry, and P. C. Wilson. 2019. Hemagglutinin Stalk-Reactive Antibodies Interfere with Influenza Virus Neuraminidase Activity by Steric Hindrance. J Virol. 93.

7. Chizhmakov, I. V., F. M. Geraghty, D. C. Ogden, A. Hayhurst, M. Antoniou, and A. J. Hay. 1996. Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukaemia cells. The J Physiol. 494 ( Pt 2):329-336.

8. Cohen, M., X. Q. Zhang, H. P. Senaati, H. W. Chen, N. M. Varki, R. T. Schooley, and P. Gagneux. 2013. Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J. 10:321.

9. Corthesy, B., Y. Benureau, C. Perrier, C. Fourgeux, N. Parez, H. Greenberg, and I. Schwartz-Cornil. 2006. Rotavirus anti-VP6 secretory immunoglobulin A contributes to protection via intracellular neutralization but not via immune exclusion. J Virol. 80:10692-10699.

10. Corti, D., J. Voss, S. J. Gamblin, G. Codoni, A. Macagno, D. Jarrossay, S. G. Vachieri, D. Pinna, A. Minola, F. Vanzetta, C. Silacci, B. M. Fernandez-Rodriguez, G. Agatic, S. Bianchi, I. Giacchetto-Sasselli, L. Calder, F. Sallusto, P. Collins, L. F. Haire, N. Temperton, J. P. Langedijk, J. J. Skehel, and A. Lanzavecchia. 2011. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333:850-856.

11. Dabaghian, M., A. M. Latifi, M. Tebianian, H. NajmiNejad, and S. M. Ebrahimi. 2018. Nasal vaccination with r4M2e.HSP70c antigen encapsulated into N-trimethyl chitosan (TMC) nanoparticulate systems: Preparation and immunogenicity in a mouse model. Vaccine 36:2886-2895.

12. Edinger, T. O., M. O. Pohl, and S. Stertz. 2014. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol. 95:263-277.

13. Ekiert, D. C., G. Bhabha, M. A. Elsliger, R. H. Friesen, M. Jongeneelen, M. Throsby, J. Goudsmit, and I. A. Wilson. 2009. Antibody recognition of a highly conserved influenza virus epitope. Science 324:246-251.

14. Fan, J., X. Liang, M. S. Horton, H. C. Perry, M. P. Citron, G. J. Heidecker, T. M. Fu, J. Joyce, C. T. Przysiecki, P. M. Keller, V. M. Garsky, R. Ionescu, Y. Rippeon, L. Shi, M. A. Chastain, J. H. Condra, M. E. Davies, J. Liao, E. A. Emini, and J. W. Shiver. 2004. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 22:2993-3003.

15. Fleury, D., B. Barrere, T. Bizebard, R. S. Daniels, J. J. Skehel, and M. Knossow. 1999. A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site. Nat Struct Biol. 6:530- 534.

16. Gordon, N. A., K. L. McGuire, S. K. Wallentine, G. A. Mohl, J. D. Lynch, R. G. Harrison, and D. D. Busath. 2017. Divalent copper complexes as influenza A M2 inhibitors. Antiviral Res. 147:100-106.

17. Gould, V. M. W., J. N. Francis, K. J. Anderson, B. Georges, A. V. Cope, and J. S. Tregoning. 2017. Nasal IgA Provides Protection against Human Influenza Challenge in Volunteers with Low Serum Influenza Antibody Titre. Front Microbiol. 8:900.

18. Hai, R., F. Krammer, G. S. Tan, N. Pica, D. Eggink, J. Maamary, I. Margine, R. A. Albrecht, and P. Palese. 2012. Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J Virol. 86:5774-5781.

19. Holsinger, L. J., M. A. Shaughnessy, A. Micko, L. H. Pinto, and R. A. Lamb. 1995. Analysis of the posttranslational modifications of the influenza virus M2 protein. J Virol. 69:1219-1225.

20. Isakova-Sivak, I., V. Matyushenko, T. Kotomina, I. Kiseleva, E. Krutikova, S. Donina, A. Rekstin, N. Larionova, D. Mezhenskaya, K. Sivak, A. Muzhikyan, A. Katelnikova, and L. Rudenko. 2019. Sequential Immunization with Universal Live Attenuated Influenza Vaccine Candidates Protects Ferrets against a High-Dose Heterologous Virus Challenge. Vaccines 7:61.

21. Ito, R., Y. A. Ozaki, T. Yoshikawa, H. Hasegawa, Y. Sato, Y. Suzuki, R. Inoue, T. Morishima, N. Kondo, T. Sata, T. Kurata, and S. Tamura. 2003. Roles of anti-hemagglutinin IgA and IgG antibodies in different sites of the respiratory tract of vaccinated mice in preventing lethal influenza pneumonia. Vaccine 21:2362- 2371.

22. Ito, T., O. T. Gorman, Y. Kawaoka, W. J. Bean, and R. G. Webster. 1991. Evolutionary analysis of the influenza A virus M gene with comparison of the M1 and M2 proteins. J Virol. 65:5491-5498.

23. Jegaskanda, S., E. R. Job, M. Kramski, K. Laurie, G. Isitman, R. de Rose, W. R. Winnall, I. Stratov, A. G. Brooks, P. C. Reading, and S. J. Kent. 2013. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J Immunol. 190:1837-1848.

24. Job, E. R., M. Schotsaert, L. I. Ibanez, A. Smet, T. Ysenbaert, K. Roose, M. Dai, C. A. M. de Haan, H. Kleanthous, T. U. Vogel, and X. Saelens. 2018. Antibodies Directed toward Neuraminidase N1 Control Disease in a Mouse Model of Influenza. J Virol. 92: e01584-17.

25. Johansen, F. E., R. Braathen, and P. Brandtzaeg. 2000. Role of J chain in secretory immunoglobulin formation. Scand J Immunol. 52:240-248.

26. Kida, H., L. E. Brown, and R. G. Webster. 1982. Biological activity of monoclonal antibodies to operationally defined antigenic regions on the hemagglutinin molecule of A/Seal/Massachusetts/1/80 (H7N7) influenza virus. Virology 122:38-47.

27. Kim, C. U., W. Lew, M. A. Williams, H. Liu, L. Zhang, S. Swaminathan, N. Bischofberger, M. S. Chen, D. B. Mendel, C. Y. Tai, W. G. Laver, and R. C. Stevens. 1997. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc. 119:681-690.

28. Klenk, H. D., R. Rott, M. Orlich, and J. Blodorn. 1975. Activation of influenza A viruses by trypsin treatment. Virology 68:426-439.

29. Kok, T. W., M. Costabile, G. A. Tannock, and P. Li. 2018. Colocalization of intracellular specific IgA (icIgA) with influenza virus in patients' nasopharyngeal aspirate cells. J Virol Methods. 252:8-14.

30. Kolpe, A., B. Schepens, W. Fiers, and X. Saelens. 2017. M2-based influenza vaccines: recent advances and clinical potential. Expert Rev Vaccines. 16:123- 136.

31. Krammer, F., and P. Palese. 2013. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr Opin Virol. 3:521-530.

32. Lambre, C. R., H. Terzidis, A. Greffard, and R. G. Webster. 1991. An enzyme- linked lectin assay for sialidase. Clin Chim Acta. 198:183-193.

33. Leser, G. P., and R. A. Lamb. 2017. Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane. J Virol. 91:e02104- 16.

34. Manzoor, R., Eguchi, N., Yoshida, R., Ozaki, H., Kondoh, T., Okuya, K., Miyamoto, H., and Takada, A. 2020. A Novel Mechanism Underlying Antiviral Activity of an Influenza Virus M2-Specific Antibody. J Virol. 95: e01277-20.

35. Matrosovich, M., T. Matrosovich, W. Garten, and H. D. Klenk. 2006. New low-viscosity overlay medium for viral plaque assays. Virol J. 3:63.

36. Mazanec, M. B., C. L. Coudret, and D. R. Fletcher. 1995. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J Virol. 69:1339-1343.

37. Mazanec, M. B., C. S. Kaetzel, M. E. Lamm, D. Fletcher, and J. G. Nedrud. 1992. Intracellular neutralization of virus by immunoglobulin A antibodies. Pro Natl Acad Sci U S A. 89:6901-6905.

38. McCown, M. F., and A. Pekosz. 2005. The influenza A virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. J Virol. 79:3595-3605.

39. Medina, R. A., and A. Garcia-Sastre. 2011. Influenza A viruses: new research developments. Nat Rev Microbiol. 9:590-603.

40. Muramatsu, M., R. Yoshida, H. Miyamoto, D. Tomabechi, M. Kajihara, J. Maruyama, T. Kimura, R. Manzoor, K. Ito, and A. Takada. 2013. Heterosubtypic antiviral activity of hemagglutinin-specific antibodies induced by intranasal immunization with inactivated influenza viruses in mice. PLoS One. 8:e71534.

41. Muramatsu, M., R. Yoshida, A. Yokoyama, H. Miyamoto, M. Kajihara, J. Maruyama, N. Nao, R. Manzoor, and A. Takada. 2014. Comparison of antiviral activity between IgA and IgG specific to influenza virus hemagglutinin: increased potential of IgA for heterosubtypic immunity. PLoS One. 9:e85582.

42. Murphy, B. R., and M. L. Clements. 1989. The systemic and mucosal immune response of humans to influenza A virus. Curr Top Microbiol Immunol. 146:107- 116.

43. Muto, N. A., R. Yoshida, T. Suzuki, S. Kobayashi, H. Ozaki, D. Fujikura, R. Manzoor, M. Muramatsu, A. Takada, T. Kimura, and H. Sawa. 2012. Inhibitory effects of an M2-specific monoclonal antibody on different strains of influenza A virus. Jpn J Vet Res. 60:71-83.

44. Nao, N., M. Kajihara, R. Manzoor, J. Maruyama, R. Yoshida, M. Muramatsu, H. Miyamoto, M. Igarashi, N. Eguchi, M. Sato, T. Kondoh, M. Okamatsu, Y. Sakoda, H. Kida, and A. Takada. 2015. A Single Amino Acid in the M1 Protein Responsible for the Different Pathogenic Potentials of H5N1 Highly Pathogenic Avian Influenza Virus Strains. PLoS One. 10:e0137989.

45. Nayak, D. P., E. K. Hui, and S. Barman. 2004. Assembly and budding of influenza virus. Virus Res. 106:147-165.

46. Neumann, G., T. Watanabe, H. Ito, S. Watanabe, H. Goto, P. Gao, M. Hughes, D. R. Perez, R. Donis, E. Hoffmann, G. Hobom, and Y. Kawaoka. 1999. Generation of influenza A viruses entirely from cloned cDNAs. Pro Natl Acad Sci U S A. 96:9345-9350.

47. Niwa, H., K. Yamamura, and J. Miyazaki. 1991. Efficient selection for high- expression transfectants with a novel eukaryotic vector. Gene 108:193-199.

48. Noda, T., H. Sagara, E. Suzuki, A. Takada, H. Kida, and Y. Kawaoka. 2002. Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. J Virol. 76:4855-4865.

49. Norderhaug, I. N., F. E. Johansen, H. Schjerven, and P. Brandtzaeg. 1999. Regulation of the formation and external transport of secretory immunoglobulins. Crit Rev Immunol. 19:481-508.

50. Ohuchi, M., N. Asaoka, T. Sakai, and R. Ohuchi. 2006. Roles of neuraminidase in the initial stage of influenza virus infection. Microbes Infect. 8:1287-1293.

51. Okada, J., N. Ohshima, R. Kubota-Koketsu, Y. Iba, S. Ota, W. Takase, T. Yoshikawa, T. Ishikawa, Y. Asano, Y. Okuno, and Y. Kurosawa. 2011. Localization of epitopes recognized by monoclonal antibodies that neutralized the H3N2 influenza viruses in man. J Gen Virol. 92:326-335.

52. Okuno, Y., K. Matsumoto, Y. Isegawa, and S. Ueda. 1994. Protection against the mouse-adapted A/FM/1/47 strain of influenza A virus in mice by a monoclonal antibody with cross-neutralizing activity among H1 and H2 strains. J Virol. 68:517-520.

53. Palese, P., K. Tobita, M. Ueda, and R. W. Compans. 1974. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397-410.

54. Pinto, L. H., L. J. Holsinger, and R. A. Lamb. 1992. Influenza virus M2 protein has ion channel activity. Cell 69:517-528.

55. Rossman, J. S., X. Jing, G. P. Leser, and R. A. Lamb. 2010. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142:902-913.

56. Saelens, X. 2019. The Role of Matrix Protein 2 Ectodomain in the Development of Universal Influenza Vaccines. J Infect Dis. 219:S68-S74.

57. Saito, S., K. Sano, T. Suzuki, A. Ainai, Y. Taga, T. Ueno, K. Tabata, K. Saito, Y. Wada, Y. Ohara, H. Takeyama, T. Odagiri, T. Kageyama, K. Ogawa-Goto, P. Multihartina, V. Setiawaty, K. N. A. Pangesti, and H. Hasegawa. 2019. IgA tetramerization improves target breadth but not peak potency of functionality of anti-influenza virus broadly neutralizing antibody. PLoS Pathog. 15:e1007427.

58. Schneemann, A., J. A. Speir, G. S. Tan, R. Khayat, D. C. Ekiert, Y. Matsuoka, and I. A. Wilson. 2012. A virus-like particle that elicits cross-reactive antibodies to the conserved stem of influenza virus hemagglutinin. J Virol. 86:11686-11697.

59. Schroeder, C., H. Heider, E. Moncke-Buchner, and T. I. Lin. 2005. The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. Eur Biophys J. 34:52-66.

60. Skehel, J. J., and D. C. Wiley. 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 69:531-569.

61. Steel, J., A. C. Lowen, T. T. Wang, M. Yondola, Q. Gao, K. Haye, A. Garcia- Sastre, and P. Palese. 2010. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio 1: e00018-10.

62. Steinhauer, D. A. 1999. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258:1-20.

63. Suzuki, T., A. Ainai, and H. Hasegawa. 2017. Functional and structural characteristics of secretory IgA antibodies elicited by mucosal vaccines against influenza virus. Vaccine 35:5297-5302.

64. Suzuki, T., A. Kawaguchi, A. Ainai, S. Tamura, R. Ito, P. Multihartina, V. Setiawaty, K. N. Pangesti, T. Odagiri, M. Tashiro, and H. Hasegawa. 2015. Relationship of the quaternary structure of human secretory IgA to neutralization of influenza virus. Pro Natl Acad Sci U S A. 112:7809-7814.

65. Takada, A., N. Kuboki, K. Okazaki, A. Ninomiya, H. Tanaka, H. Ozaki, S. Itamura, H. Nishimura, M. Enami, M. Tashiro, K. F. Shortridge, and H. Kida. 1999. Avirulent Avian influenza virus as a vaccine strain against a potential human pandemic. J Virol. 73:8303-8307.

66. Takada, A., S. Matsushita, A. Ninomiya, Y. Kawaoka, and H. Kida. 2003. Intranasal immunization with formalin-inactivated virus vaccine induces a broad spectrum of heterosubtypic immunity against influenza A virus infection in mice. Vaccine 21:3212-3218.

67. Terajima, M., J. Cruz, M. D. Co, J. H. Lee, K. Kaur, J. Wrammert, P. C. Wilson, and F. A. Ennis. 2011. Complement-dependent lysis of influenza a virus- infected cells by broadly cross-reactive human monoclonal antibodies. J Virol. 85:13463-13467.

68. Terauchi, Y., K. Sano, A. Ainai, S. Saito, Y. Taga, K. Ogawa-Goto, S. I. Tamura, T. Odagiri, M. Tashiro, M. Fujieda, T. Suzuki, and H. Hasegawa. 2018. IgA polymerization contributes to efficient virus neutralization on human upper respiratory mucosa after intranasal inactivated influenza vaccine administration. Hum Vaccin Immunother. 14:1351-1361.

69. Thaa, B., A. Herrmann, and M. Veit. 2010. Intrinsic cytoskeleton-dependent clustering of influenza virus M2 protein with hemagglutinin assessed by FLIM- FRET. J Virol. 84:12445-12449.

70. Tiller, T., E. Meffre, S. Yurasov, M. Tsuiji, M. C. Nussenzweig, and H. Wardemann. 2008. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods. 329:112-124.

71. Tong, S., Y. Li, P. Rivailler, C. Conrardy, D. A. Castillo, L. M. Chen, S. Recuenco, J. A. Ellison, C. T. Davis, I. A. York, A. S. Turmelle, D. Moran, S. Rogers, M. Shi, Y. Tao, M. R. Weil, K. Tang, L. A. Rowe, S. Sammons, X. Xu, M. Frace, K. A. Lindblade, N. J. Cox, L. J. Anderson, C. E. Rupprecht, and R. O. Donis. 2012. A distinct lineage of influenza A virus from bats. Pro Natl Acad Sci U S A. 109:4269-4274.

72. Tsuchiya, E., K. Sugawara, S. Hongo, Y. Matsuzaki, Y. Muraki, Z. N. Li, and K. Nakamura. 2001. Antigenic structure of the haemagglutinin of human influenza A/H2N2 virus. J Gen Virol. 82:2475-2484.

73. Tudor, D., H. Yu, J. Maupetit, A. S. Drillet, T. Bouceba, I. Schwartz-Cornil, L. Lopalco, P. Tuffery, and M. Bomsel. 2012. Isotype modulates epitope specificity, affinity, and antiviral activities of anti-HIV-1 human broadly neutralizing 2F5 antibody. Pro Natl Acad Sci U S A. 109:12680-12685.

74. Tumpey, T. M., M. Renshaw, J. D. Clements, and J. M. Katz. 2001. Mucosal delivery of inactivated influenza vaccine induces B-cell-dependent heterosubtypic cross-protection against lethal influenza A H5N1 virus infection. J Virol. 75:5141- 5150.

75. Turner, P. J., A. F. Abdulla, M. E. Cole, R. R. Javan, V. Gould, M. E. O'Driscoll, J. Southern, M. Zambon, E. Miller, N. J. Andrews, K. Hoschler, and J. S. Tregoning. 2020. Differences in nasal immunoglobulin A responses to influenza vaccine strains after live attenuated influenza vaccine (LAIV) immunization in children. Clin Exp Immunol. 199:109-118.

76. Varghese, J. N., J. L. McKimm-Breschkin, J. B. Caldwell, A. A. Kortt, and P. M. Colman. 1992. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins 14:327-332.

77. von Itzstein, M., W. Y. Wu, G. B. Kok, M. S. Pegg, J. C. Dyason, B. Jin, T. Van Phan, M. L. Smythe, H. F. White, S. W. Oliver, and et al. 1993. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418-423.

78. Westgeest, K. B., T. M. Bestebroer, M. I. Spronken, J. Gao, L. Couzens, A. D. Osterhaus, M. Eichelberger, R. A. Fouchier, and M. de Graaf. 2015. Optimization of an enzyme-linked lectin assay suitable for rapid antigenic characterization of the neuraminidase of human influenza A(H3N2) viruses. J Virol Methods. 217:55-63.

79. Wu, Y., Y. Wu, B. Tefsen, Y. Shi, and G. F. Gao. 2014. Bat-derived influenza- like viruses H17N10 and H18N11. Trends Microbiol. 22:183-191.

80. Yamayoshi, S., R. Uraki, M. Ito, M. Kiso, S. Nakatsu, A. Yasuhara, K. Oishi, T. Sasaki, K. Ikuta, and Y. Kawaoka. 2017. A Broadly Reactive Human Anti- hemagglutinin Stem Monoclonal Antibody That Inhibits Influenza A Virus Particle Release. EBioMedicine. 17:182-191.

81. Yoshida, R., M. Igarashi, H. Ozaki, N. Kishida, D. Tomabechi, H. Kida, K. Ito, and A. Takada. 2009. Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses. PLoS Pathog. 5:e1000350.

82. Zebedee, S. L., and R. A. Lamb. 1988. Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol. 62:2762-2772.

83. Zhou, D., Y. Zhang, Q. Li, Y. Chen, B. He, J. Yang, H. Tu, L. Lei, and H. Yan. 2011. Matrix protein-specific IgA antibody inhibits measles virus replication by intracellular neutralization. J Virol. 85:11090-11097.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る