リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of dimensions and regularity on the mechanical properties of the smectic phase formed during orientation-induced crystallization of poly (ethylene terephthalate)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of dimensions and regularity on the mechanical properties of the smectic phase formed during orientation-induced crystallization of poly (ethylene terephthalate)

Tomisawa, Ren Oneda, Shun Ikaga, Toshifumi Kim, KyoungHou Ohkoshi, Yutaka Okada, Kazuyuki Masunaga, Hiroyasu Kanaya, Toshiji Katsuta, Hiroo Funatsu, Yoshitsugu 信州大学 DOI:10.1016/j.polymer.2019.01.002

2021.02.22

概要

A fibrillar-shaped metastable smectic phase forms during orientation-induced crystallization of poly(ethylene terephthalate). We investigated the effects of dimensions and regularity of the smectic phase on the mechanical properties by high-precision X-ray measurements. The drawing stress dependence was 76-168 MPa and the spinning speed dependence of 250-2000 m/min. The proportion, persistence length, and thickness of the smectic phase achieved their maximum values at 0.3-0.4 ms after necking. At this time g(II) also reached a minimum value of 3.7%-4.3%. The persistence length increased linearly with the natural draw ratio of as-spun fibers at less than 1500 m/min. The maximum values of the proportion, persistence length, and thickness showed no dependence on the drawing stress; however, the proportion and persistence length increased more rapidly. The increase of d-spacing with drawing stress led to an apparent elastic modulus of approximately 40 GPa for the oriented molecular bundle.

この論文で使われている画像

参考文献

1)

T. Kikutani et al. “Fundamental and Practical Technologies for Nano-structured Polymeric

Materials”, 2008, p.56-110, CMC press, ISBN978-4-7813-0043-6.

2)

A. Peterlin, J. Polym. Sci., A-2, 7, (1969), 1151.

3)

T. Yamaguchi, K. Komoriyama, Y. Ohkoshi, H. Urakawa, Y. Gotoh, N. Terasawa, M. Nagura, K.

Kajiwara, J. Polym. Sci., Polym. Phys., 43, (2005), 1090-1099.

4)

T. Yamaguchi, K. H. Kim, T. Murata, M. Koide, S. Hitoosa, H. Urakawa, Y. Ohkoshi, Y. Gotoh,

M. Nagura, M. Kotera, K. Kajiwara, J. Polym. Sci., Polym. Phys., 46, (2008), 2126-2142.

5)

K. H. Kim, T. Yamaguchi, Y. Ohkoshi, Y. Gotoh, M. Nagura, H. Urakawa, M. Kotera, T.

Kikutani, J. Polym. Sci., Polym. Phys, 47, (2009), 1653-1665.

6)

R. Bonart, Kolloid-Z, 213, (1966), 1-11.

7)

K. H. Kim, R. Aida, Y. A. Kang, T. Ikaga, Y. Ohkoshi, I. Wataoka, H. Urakawa, Polymer, 53,

(2012), 4272-4279.

8)

T. Konishi, Y. Miyamoto, Polymer, 42, (2010), 349-353.

9)

D. Kawakami, B. S. Hsiao, C. Burger, S. Ran, C. Avila-Orta, I. Sics, T. Kikutani, B. Chu,

Macromolecules, 38, (2005), 91-103.

10) T. Asano, F. J. Balta Calleja, A. Flores, M. Tanigaki, M. Mina, C. Sawatari, H. Itagaki, H.

Takahashi, I. Hatta, Polymer, 40, (1999), 6475-6484.

11) A. I. Abou-Kandil, G. Goldbeck-Wood, A. H. Windle, Macromolecules 40, (2007), 6448-6453

12) K. H. Kim, T. Murata, Y. A. Kang, Y. Ohkoshi, Y. Gotoh, M. Nagura, H. Urakawa,

Macromolecules, 44, (2011), 7378-7384.

13) A. Komoriya, R. Aida, K. H. Kim, Y. Ohkoshi, I. Wataoka, H. Urakawa, Fiber preprints, Japan,

56, (2010), 303.

14) K. Sugawara, T. Ikaga, K.H. Kim, Y. Ohkoshi, K. Okada, H. Masunaga, T. Kanaya, M. Masuda,

Y. Maeda, Polymer, 79, (2015), 37-46.

15) S. Oneda, R. Tomisawa, T. Ikaga, K. H. Kim, Y, Ohkoshi, K. Okada, H. Masunaga, T. Kanaya,

Y. Funatsu, M. Masuda, H. Katsuta, Fiber preprints, Japan, 72, (2017), 1B11.

16) R. Tomisawa, T. Ikaga, K.H. Kim, Y. Ohkoshi, K. Okada, H. Masunaga, T. Kanaya, M. Masuda,

Y. Maeda, Polymer, 116, (2017), 367-377.

17) R. Tomisawa, T. Ikaga, K.H. Kim, Y. Ohkoshi, K. Okada, H. Masunaga, T. Kanaya, M. Masuda,

Y. Maeda, Polymer, 116, (2017), 357-366.

18) T. Hatsui, M. Omodani, T. Kudo, K. Kobayashi, T. Imamura, T. Ohmoto, A. Iwata, S. Ono, Y.

Kirihara, T. Kameshima, Proc. Int. Image Sensor Workshop, 2013, Art. No. 3.05.

http://www.imagesensors.org/Past%20Workshops/2013%20Workshop/2013%20Papers/03-_05

8_hatsui_paper.pdf

19) T. Hatsui, H. Graafsma, IUCrJ 2015, 2, (3), 371-383.

20) A. Mehta, U. Gaur, B. Wunderlich, J. Polym. Sci. Polym. Phys. Ed. 16, (1978), 289.

21) W. Okumura, T. Kanegae, Y. Ohkoshi, Y. Gotoh, M. Nagura Polymer Processing XVIII, (2003),

1-7.

22) S.Kase, and T.Matsuo, Journal of Polymer Science Part A: General Papers, 3, (1965), 2541.

23) W. Okumura, T. Yamaguchi, Y. Ohkoshi, Y. Gotoh, M. Nagura, Intern. Polym. Proc., 17, (2002),

124-132.

24) R. Hosemann, S. N. Bagchi, "Direct Analysis of Diffraction by Matter" (North-Holland,

Amsterdam, 1962) Ch. 9.

25) J. Shimizu, T. Kikutani, A. Takaku, N. Okui, Senʹi Gakkaishi 40, (1984), 177-183.

26) Y. Masubuchi. “Fundamental and Practical Technologies for Nano-structured Polymeric

Materials”, 2008, p.66-74, CMC press, ISBN978-4-7813-0043-6.

27) T.Yamaguchi, Y. Ohkoshi, Y. Gotoh, M. Nagura, Seikei-Kakou 17, (2005), 649-653.

28) K. Okada, K. Nakata, Y. Higashioji, K. Takahashi, Y. Ohkoshi, T. Kanaya, Kobunshi Ronbunshu,

71, 11,

(2014), 593-600.

29) Y.Y. Tomashpolʹskii, G.S. Markova, Polym. Sci. USSR 6, (1964), 316-324.

30) I. Sakurada, T. Itou, Koubunnsi Kagaku, 19, (1962), 300-305.

31) R. Tomisawa, T. Ando, T. Ikaga, K. H. Kim, Y. Ohkoshi, K. Okada, H. Masunaga, T. Kanaya, H.

Katsuta and Y. Funatsu, Polymer journal submitted.

32) D. C. Prevorsec, J. Polymer Sci. Symposium no. 32 (1971).

...

参考文献をもっと見る