リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Demonstration of real-time structured-light depth sensing based on a solid-state VCSEL beam scanner」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Demonstration of real-time structured-light depth sensing based on a solid-state VCSEL beam scanner

LI RUIXIAO HU SHANTING GU XIAODONG FUMIO KOYAMA 東京工業大学 DOI:https://doi.org/10.1364/OE.448506

2022.01.03

概要

We demonstrated a real-time scanning structured-light depth sensing system based on a solid-state vertical cavity surface-emitting laser (VCSEL) beam scanner integrated with an electro-thermally tunable VCSEL. Through a swept voltage added to the tunable VCSEL, a field of view of 6°xl2° could be scanned with a scanning speed of 100 kHz by the beam scanner. Adopting the beam scanner, the real-time depth image with a lateral resolution of 10,000 (20x500) was obtained by measuring a step target placed at 35cm. The frame rate could be >10Hz even if sunlight shot noise is artificially added to the experimental data. By using a higher-speed camera, a potential lateral resolution could be reached at 50,000 (100x500) with a frame rate of > 20Hz. By using flat optics, a compact scanning module offering line pattern with FoV of >40°x20° was also demonstrated. It could help to realize high-resolution and high-accuracy structured-light sensing with a compact module.

この論文で使われている画像

参考文献

1. J. Geng, "Structured-light 3D surface imaging: a tutorial,Adv. Opt. Photonics 3(2),128 (2011).

2. K. Iga, “Forty years of vertical-cavity surface-emitting laser: Invention and innovation,5, Jpn. J. Appl. Phys. 57(8), 08PA01(2018).

3. K. J. Ebeling, R. Michalzik, and H. Moench, “Vertical-cavity surface-emitting laser technology applications with focus on sensors and three-dimensional imaging,5, Jpn. J. Appl. Phys. 57(8), 08PA02 (2018).

4. Z. Mor and B. Morgenstein, 'Overlapping pattern projector,(2018).

5. S. McEldowney, “Depth projector system with integrated VCSEL array,” (2012).

6. B. Pesach and Z. Mor, "Projectors of structured light,” (2014).

7. S. Zhang, “High-speed 3D shape measurement with structured light methods: A review," Opt. Lasers Eng. 106, 119-131(2018).

8. O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light range scanning of moving objects,v Proc. IEEE Int. Conf. Comput. Vis. 2, 359-366 (2001).

9. Y. An, J.-S. Hyun, and S. Zhang, “Pixel-wise absolute phase unwrapping using geometric constraints of structured light system," Opt. Express 24(16), 18445-18459 (2016).

10. S. T. S. Holmstrom, U. Baran, and H. Urey, “MEMS laser scanners: A review,” J. Microelectromech. Sy st. 23(2), 259-275 (2014).

11. C. Winter, L. Fabre, F. Lo Conte,し Kilcher, F. Kechana, N. Abele, and M. Kayal, “Micro-beamer based on MEMS micro-mirrors and laser light source/5 Procedia Chem. 1(1), 1311-1314 (2009).

12. H. Schenk, J. Grahmann, T. Sandner, M. Wagner, U. Dauderstadt, and J. U. Schmidt, “Micro mirrors for high-speed laser deflection and patterning,,5 Phys. Procedia 56(C), 7-18 (2014).

13. Y. Wang, G. Zhou, X. Zhang, K. Kwon, P.-A. Blanche, N. Triesault, K. Yu, and M. C. Wu, “2D broadband beamsteering with large-scale MEMS optical phased array,” Optica 6(5), 557 (2019).

14. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, ''Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,Opt. Express 19(22), 21595-21604 (2011).

15. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195-199 (2013).

16. X. Zhang, K. Kwon, J. Henriksson, J. Luo, and M. C. Wu, "Large-scale Silicon Photonics Focal Plane Switch Array for Optical Beam Steering,” in Optical Fiber Communication Conference (OFC) 2021(2021),pp. 5-7.

17. D. Inoue, T. Ichikawa, A. Kawasaki, and T. Yamashita, ''Demonstration of a new optical scanner using silicon photonics integrated circuit,Opt. Express 27(3), 2499 (2019).

18. H. Ito, Y. Kusunoki, J. Maeda, D. Akiyama, N. Kodama, H. Abe, R. Tetsuya, and T. Baba, “Wide beam steering by slow-light waveguide gratings and a prism lens,” Optica 7(1),47 (2020).

19. X. Gu, T. Shimada, and F. Koyama, “Giant and high-resolution beam steering using slow-light waveguide amplifier,” Opt. Express 19(23), 22675 (2011).

20. M. Nakahama, X. Gu, A. Matsutani, T. Sakaguchi, and F. Koyama, “High Power Non-mechanical Beam Scanner based on VCSEL Amplifier,M 2016 21st Optoelectron. Commun. Conf, held jointly with 2016 Int. Conf. Photonics Switch.1,4-6 (2016).

21. X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on bragg reflector waveguide with a number of resolution points larger than 100〇,’’ IEEE Photonics J. 4(5), 1712-1719 (2012).

22. S. Hu, A. Hassan, X. Gu, M. Nakahama, S. Shinada, and F. Koyama, “Surface grating VCSEL-integrated amplifier/beam scanner with high power and single mode operation,Appl. Phys. Express 14(6), 062005 (2021).

23. S. Hu, X. Gu, M. Nakahama, and F. Koyama, “Non-mechanical beam scanner based on VCSEL integrated amplifier with resonant wavelength detuning design/5 Chin. Opt. Lett. 19(12),121403 (2021).

24. S. Hu, M. Takanohashi, X. Gu, K. Shimura, and F. Koyama, “Lateral Integration of VCSEL and Amplifier with Resonant Wavelength Detuning Design,in Conference on Lasers and Electro-Optics (OSA, 2019), p. SM4N.3.

25. X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GalnAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99(21),211107 (2011).

26. T. Jia, Z. Zhou, and H. Gao, “Depth measurement based on infrared coded structured light,” J. Sensors 44(5), 1628-1632 (2014).

27. R. Li, Z. Ho, X. Gu, and F. Koyama, “Wide-range Structured-Light Sensing Based on Non-mechanical VCSEL Beam Scanner,in MOC2019 (2019), pp. 10-11.

28. R. G. Dorsch, G. Hausler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,Appl. Opt. 33(7), 1306 (1994).

29. R. Bari beau and M. Rioux, “Centroid fluctuations of speckled targets,” Appl. Opt. 30(26), 3752 (1991).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る