リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the pathological mechanism of alopecia areata in C3H/HeJ mouse model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the pathological mechanism of alopecia areata in C3H/HeJ mouse model

Hashimoto, Kei 京都大学 DOI:10.14989/doctor.r13497

2022.07.25

概要

円形脱毛症(alopecia areata; AA)は後天性に脱毛斑を生じる非瘢痕性脱毛症であり、皮膚疾患の中でも特にQOLが著しく低下する疾患である。AAの最も一般的な病型は脱毛斑が1つ生じる単発型であるが、複数の脱毛斑が生じる多発型、頭髪全てが脱落する全頭型、全身で脱毛が生じる汎発型に移行する例も少なくない。治療法はステロイド局所注射、ステロイド外用及び局所免疫療法が中心であるが、脱毛範囲が大きく罹患期間が長いほど治療抵抗性が高く、さらに副作用の懸念もあることから、治療満足度は高くない。そのため、病型及び病期に応じた有効性及び安全性の高い新規治療薬の開発が強く望まれている。
AAは、遺伝的な背景に加えてウイルス感染などのストレスがトリガーとなり、毛包の免疫特権が破綻することで発症する自己免疫疾患である。急性期の脱毛部では、リンパ球等が毛包周囲に密に浸潤し、抗原提示に関わるmajor histocompatibility complex(MHC)class I/Ⅱの発現が増加している。標的となる自己抗原の候補として、メラニン合成又は爪関連タンパク質が報告されているものの、不明な点も多い。
治療薬の開発には臨床の病態を反映した動物モデルが有用な手段となる。AAのモデルマウスとして、C3H/HeJ系統のAA発症マウスの皮膚所属リンパ節から単離した細胞を拡大培養しナイーブマウスに移植することで作製するリンパ節細胞移植モデルマウスが報告されている。臨床所見と類似した特徴がみられ、病態を良く反映しているため、本モデルマウスはAAの研究に汎用されている。本論文では、本C3H/HeJモデルマウスの病態解析を通して新たな治療標的を明らかにしている。さらに、本モデルマウスをより簡便に作製する新しい方法を構築している。

第一章では、C3H/HeJモデルマウスを用いて病期による病態の違いと標的自己抗原について報告されている。ナイーブ、未発症、発症後の急性期及び慢性期について、末梢血単核細胞(PBMC)、皮膚所属リンパ節及び皮膚における免疫細胞のポピュレーションを解析した。急性期には、腋窩リンパ節及びPBMCにおいてCD8+ effector memory T細胞(TEM)及びCD8+ central memory T細胞(TCM)の割合が増加した。慢性期には、腋窩リンパ節及び皮膚でCD8+ TEM及びCD8+ resident memory T細胞(TRM)の割合がさらに増加した一方、PBMCでは慢性期にCD8+ TEMの割合が低下し、CD8+ TCMの割合が増加した。この結果から、急性期にはCD8+ memory T細胞が全身で増加し、慢性期にはTEMは局所に、TCMは循環に留まることが示唆された。一方、CD4+ TEMの割合は腋窩リンパ節及びPBMCにおいて未発症で増加し、CD8+ TEMと比較して増加率が大きかったことから、CD4+ TEMはCD8+ TEMに先んじて増加し、発症前後にリンパ節においてCD4+ TEMが抗原提示を受けている可能性が示唆された。また、発症後の皮膚ではMHC class I/IIの発現が異所性に増加し、CD11c+樹状細胞が毛包周囲に浸潤していたことから、発症後には皮膚においても抗原提示が行われている可能性が示唆された。さらに、AA患者の標的抗原の候補であるtyrosinase-related protein 2及びtyrosinaseの関与について検証した結果、tyrosinase特異的CD8+ T細胞の割合及びtyrosinaseに対する血清抗体価が発症前後に増加した。以上の結果から、病態形成に関わる細胞ポピュレーションとその分布及び免疫関連因子の発現が病期によって異なること、また、本モデルマウスにおいてもAA患者と同様にtyrosinaseが標的抗原の一つであることを明らかにした。

第二章では、凍結細胞を用いたC3H/HeJモデルマウスの作製法について報告されている。AA発症マウスのリンパ節細胞を培養した後に凍結保存し、解凍して移植する方法(手法①)、リンパ節細胞を単離後すぐに凍結保存し、解凍後に培養して移植する方法(手法②)と凍結保存しない従来法についてAAの発症率を検討した。その結果、手法①では発症率が著しく低下したが、手法②は従来法と同程度の発症率を示した。手法②で作製したモデルマウスは従来法で作製したモデルマウスと同様に、脱毛の所見、毛包周囲への炎症性細胞の浸潤、皮膚中サイトカイン等の発現上昇が見られ、臨床の病態とも類似していた。また、発症率の低かった移植細胞と比較して、高い発症率を示した移植細胞ではCD4+ TEM、CD8+ TEM、CD8+ TCM及びCD11c+樹状細胞の割合が大きく、これらのポピュレーションの移植が発症に重要であることが示唆された。結論として、凍結細胞を用いてより効率的に、臨床の病態を良く反映したAAモデルマウスを作製する方法を構築した。

第三章では、自然免疫の関与と新規治療薬の候補について報告されている。病期ごとの皮膚におけるNOD-like receptor family pyrin domain-containing protein 3(NLRP3) inflammasomeの活性化について検討した結果、interleukin(IL)-1βは未発症及び発症後の皮膚で、IL-18 は発症後の皮膚で増加していた。発症後の皮膚ではNLRP3 inflammasomeの構成因子であるNLRP3、apoptosis-associated speck-like protein containing caspase recruitment domain 及びcaspase-1 の発現も増加していたことから、NLRP3 inflammasomeの増加及び活性化がAAの発症及び増悪に関与していることが示唆された。また、C3H/HeJモデルマウスにNLRP3阻害剤であるMCC950を週3回、6週間、皮下投与したところ、投与開始7日後から発毛ポイントが増加し、その後も経日的に増加した。投与開始7日後の皮膚では、毛包周囲への好中球及びリンパ球の浸潤が減少し、サイトカインやNLRP3 inflammasomeの構成要素の発現が低下していた。以上の結果から、NLRP3 inflammasomeがAAの病態形成に関与していること、また、NLRP3阻害剤がAAの有望な新規治療薬候補になりうることを明らかにした。

この論文で使われている画像

参考文献

1. Mirzoyev SA, Schrum AG, Davis MDP, and Torgerson RR. Lifetime incidence risk of alopecia areata estimated at 2.1% by Rochester Epidemiology Project, 1990-2009. J. Invest. Dermatol. 2014;134(4):1141-2.

2. Harries M, Macbeth AE, Holmes S, Chiu WS, Gallardo WR, Nijher M, et al. The epidemiology of alopecia areata: a population-based cohort study in UK primary care. Br. J. Dermatol. 2022;186(2):257-65.

3. Tan E, Tay YK, Goh CL, and Chin Giam Y. The pattern and profile of alopecia areata in Singapore--a study of 219 Asians. Int. J. Dermatol. 2002;41(11):748-53.

4. Rencz F, Gulácsi L, Péntek M, Wikonkál N, Baji P, and Brodszky V. Alopecia areata and health-related quality of life: a systematic review and meta-analysis. Br. J. Dermatol. 2016;175(3):561-71.

5. Liu LY, King BA, and Craiglow BG. Health-related quality of life (HRQoL) among patients with alopecia areata (AA): A systematic review. J. Am. Acad. Dermatol. 2016;75(4):806-12.

6. Cranwell WC, Lai VW, Photiou L, Meah N, Wall D, Rathnayake D, et al. Treatment of alopecia areata: An Australian expert consensus statement. Australas. J. Dermatol. 2019;60(2):163-70.

7. Pericin M, and Trüeb RM. Topical immunotherapy of severe alopecia areata with diphenylcyclopropenone: evaluation of 68 cases. Dermatology 1998;196(4):418- 21.

8. Manimaran RP, Ramassamy S, Rajappa M, and Chandrashekar L. Therapeutic outcome of diphencyprone and its correlation with serum cytokine profile in alopecia areata. J. Dermatolog. Treat. 2022;33(1):324-8.

9. Liu LY, Craiglow BG, Dai F, and King BA. Tofacitinib for the treatment of severe alopecia areata and variants: A study of 90 patients. J. Am. Acad. Dermatol. 2017;76(1):22-8.

10. Nakajima T, Inui S, and Itami S. Pulse corticosteroid therapy for alopecia areata: study of 139 patients. Dermatology 2007;215(4):320-4.

11. Nowaczyk J, Makowska K, Rakowska A, Sikora M, and Rudnicka L. Cyclosporine with and without systemic corticosteroids in treatment of alopecia areata: A Systematic Review. Dermatol. Ther. (Heidelb). 2020;10(3):387-99.

12. Trüeb RM, and Dias M. Alopecia areata: a comprehensive review of pathogenesis and management. Clin. Rev. Allergy. Immunol. 2018;54(1):68-87.

13. Lee S, and Lee WS. Management of alopecia areata: Updates and algorithmic approach. J. Dermatol. 2017;44(11):1199-211.

14. Meah N, Wall D, York K, Bhoyrul B, Bokhari L, Sigall DA, et al. The Alopecia Areata Consensus of Experts (ACE) study: Results of an international expert opinion on treatments for alopecia areata. J. Am. Acad. Dermatol. 2020;83(1):123- 30.

15. Fukuyama M, Ito T, and Ohyama M. Alopecia areata: Current understanding of the pathophysiology and update on therapeutic approaches, featuring the Japanese Dermatological Association guidelines. J. Dermatol. 2022;49(1):19-36.

16. Darwin E, Hirt PA, Fertig R, Doliner B, Delcanto G, Jimenez JJ. Alopecia areata: Review of epidemiology, clinical features, pathogenesis, and new treatment options. Int. J. Trichol. 2018;10:51-60.

17. Rajabi F, Drake LA, Senna MM, and Rezaei N. Alopecia areata: a review of disease pathogenesis. Br. J. Dermatol. 2018;179(5):1033-48.

18. Bertolini M, McElwee K, Gilhar A, Bulfone-Paus S, and Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp. Dermatol. 2020;29(8):703-25.

19. Pratt CH, King LE, Jr., Messenger AG, Christiano AM, and Sundberg JP. Alopecia areata. Nat. Rev. Dis. Primers. 2017;3:17011.

20. Strazzulla LC, Wang EHC, Avila L, Lo Sicco K, Brinster N, Christiano AM, et al. Alopecia areata: Disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J. Am. Acad. Dermatol. 2018;78(1):1-12.

21. Petukhova L, Duvic M, Hordinsky M, Norris D, Price V, Shimomura Y, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 2010;466(7302):113-7.

22. de Jong A, Jabbari A, Dai Z, Xing L, Lee D, Li MM, et al. High-throughput T cell receptor sequencing identifies clonally expanded CD8+ T cell populations in alopecia areata. JCI Insight 2018;3(19):e121949.

23. Wang EHC, Yu M, Breitkopf T, Akhoundsadegh N, Wang X, Shi FT, et al. Identification of autoantigen epitopes in Alopecia Areata. J. Invest. Dermatol. 2016;136(8):1617-26.

24. Leung MC, Sutton CW, Fenton DA, and Tobin DJ. Trichohyalin is a potential major autoantigen in human alopecia areata. J. Proteome. Res. 2010;9(10):5153- 63.

25. Erb U, Freyschmidt-Paul P, and Zöller M. Tolerance induction by hair-specific keratins in murine alopecia areata. J. Leukoc. Biol. 2013;94(4):845-57.

26. Ito T, Bertolini M, Funakoshi A, Ito N, Takayama T, Biro T, et al. Presence of MAGE-A3 specific T cells in alopecia areata - study for the possibility of AA antigens -. J. Dermatol. Sci. 2013;72:327-30.

27. Gilhar A, Schrum AG, Etzioni A, Waldmann H, and Paus R. Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmun. Rev. 2016;15(7):726-35.

28. Sundberg JP, McElwee K, Brehm MA, Su L, and King LE, Jr. Animal models for alopecia areata: What and Where? J. Investig. Dermatol. Symp. Proc. 2015;17(2):23-6.

29. Sun J, Silva KA, McElwee KJ, King LE, Jr., and Sundberg JP. The C3H/HeJ mouse and DEBR rat models for alopecia areata: review of preclinical drug screening approaches and results. Exp. Dermatol. 2008;17(10):793-805.

30. Sundberg JP, Cordy WR, and King LE, Jr. Alopecia areata in aging C3H/HeJ mice. J. Invest. Dermatol. 1994;102(6):847-56.

31. Wang EHC, Khosravi-Maharlooei M, Jalili RB, Yu R, Ghahary A, Shapiro J, et al. Transfer of alopecia areata to C3H/HeJ mice using cultured lymph node-derived cells. J. Invest. Dermatol. 2015;135(10):2530-2.

32. Wang EHC, and McElwee KJ. Nonsurgical induction of alopecia areata in C3H/HeJ Mice via adoptive transfer of cultured lymphoid cells. Methods Mol. Biol. 2020;2154:121-31.

33. Freyschmidt-Paul P, Sundberg JP, Happle R, McElwee KJ, Metz S, Boggess D, et al. Successful treatment of alopecia areata-like hair loss with the contact sensitizer squaric acid dibutylester (SADBE) in C3H/HeJ mice. J. Invest. Dermatol. 1999;113(1):61-8.

34. Xing L, Dai Z, Jabbari A, Cerise JE, Higgins CA, Gong W, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med. 2014;20(9):1043-9.

35. Friedli A, Labarthe MP, Engelhardt E, Feldmann R, Salomon D, and Saurat JH. Pulse methylprednisolone therapy for severe alopecia areata: an open prospective study of 45 patients. J. Am. Acad. Dermatol. 1998;39(4 Pt 1):597-602.

36. Paus R, Slominski A, and Czarnetzki BM. Is alopecia areata an autoimmune- response against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb? Yale. J. Biol. Med. 1993;66(6):541-54.

37. Tilney NL. Patterns of lymphatic drainage in the adult laboratory rat. J. Anat. 1971;109(Pt 3):369-83.

38. Suárez-Fariñas M, Ungar B, Noda S, Shroff A, Mansouri Y, Fuentes-Duculan J, et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J. Allergy Clin. Immunol. 2015;136(5):1277-87.

39. Perret C, Wiesner-Menzel L, and Happle R. Immunohistochemical analysis of T- cell subsets in the peribulbar and intrabulbar infiltrates of alopecia areata. Acta. Derm. Venereol. 1984;64(1):26-30.

40. Ito T, Ito N, Saatoff M, Hashizume H, Fukamizu H, Nickoloff BJ, et al. Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J. Invest. Dermatol. 2008;128(5):1196-206.

41. Ito T, Hashizume H, Shimauchi T, Funakoshi A, Ito N, Fukamizu H, et al. CXCL10 produced from hair follicles induces Th1 and Tc1 cell infiltration in the acute phase of alopecia areata followed by sustained Tc1 accumulation in the chronic phase. J. Dermatol. Sci. 2013;69(2):140-7.

42. Agamia N, Apalla Z, El Achy S, Abdelmaksoud E, Kandil N, and Abozeid S. Interferon-gamma serum level and immunohistochemical expression of CD8 cells in tissue biopsies in patients with alopecia areata in correlation with trichoscopic findings. Dermatol. Ther. 2020;33(4):e13718.

43. Dai Z, Xing L, Cerise J, Wang EH, Jabbari A, de Jong A, et al. CXCR3 blockade inhibits T cell migration into the skin and prevents development of alopecia areata. J. Immunol. 2016;197(4):1089-99.

44. Farber DL, Yudanin NA, and Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 2014;14(1):24-35.

45. Ho AW, and Kupper TS. T cells and the skin: from protective immunity to inflammatory skin disorders. Nat. Rev. Immunol. 2019;19(8):490-502.

46. Borcherding N, Crotts SB, Ortolan LS, Henderson N, Bormann NL, and Jabbari A. A transcriptomic map of murine and human alopecia areata. JCI Insight 2020;5(13):e137424.

47. Subramanya RD, Coda AB, and Sinha AA. Transcriptional profiling in alopecia areata defines immune and cell cycle control related genes within disease-specific signatures. Genomics 2010;96(3):146-53.

48. Förster R, Davalos-Misslitz AC, and Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat. Rev. Immunol. 2008;8(5):362-71.

49. Gately MK, Gubler U, Brunda MJ, Nadeau RR, Anderson TD, Lipman JM, et al. Interleukin-12: a cytokine with therapeutic potential in oncology and infectious diseases. Ther. Immunol. 1994;1(3):187-96.

50. Liu T, Li S, Ying S, Tang S, Ding Y, Li Y, et al. The IL-23/IL-17 Pathway in Inflammatory Skin Diseases: From Bench to Bedside. Front. Immunol. 2020;11:594735.

51. Rittié L, and Elder JT. Capturing the finer points of gene expression in psoriasis: Beaming in on the CCL19/CCR7 axis. J. Invest. Dermatol. 2012;132(6):1535-8.

52. Ito T, Ito N, Bettermann A, Tokura Y, Takigawa M, and Paus R. Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model. Am. J. Pathol. 2004;164(2):623-34.

53. Bröcker EB, Echternacht-Happle K, Hamm H, and Happle R. Abnormal expression of class I and class II major histocompatibility antigens in alopecia areata: modulation by topical immunotherapy. J. Invest. Dermatol. 1987;88(5):564-8.

54. Kemp EH, Sandhu HK, Weetman AP, and McDonagh AJ. Demonstration of autoantibodies against tyrosine hydroxylase in patients with alopecia areata. Br. J. Dermatol. 2011;165(6):1236-43.

55. McElwee KJ, Boggess D, King LE, Jr., and Sundberg JP. Experimental induction of alopecia areata-like hair loss in C3H/HeJ mice using full-thickness skin grafts. J. Invest. Dermatol. 1998;111(5):797-803.

56. Olsen E, Hordinsky M, McDonald-Hull S, Price V, Roberts J, Shapiro J, et al. Alopecia areata investigational assessment guidelines. National Alopecia Areata Foundation. J. Am. Acad. Dermatol. 1999;40(2 Pt 1):242-6.

57. Zhang X, Zhao Y, Ye Y, Li S, Qi S, Yang Y, et al. Lesional infiltration of mast cells, Langerhans cells, T cells and local cytokine profiles in alopecia areata. Arch. Dermatol. Res. 2015;307(4):319-31.

58. Nakamura M, Jo J, Tabata Y, and Ishikawa O. Controlled delivery of T-box21 small interfering RNA ameliorates autoimmune alopecia (Alopecia Areata) in a C3H/HeJ mouse model. Am. J. Pathol. 2008;172(3):650-8.

59. Elela MA, Gawdat HI, Hegazy RA, Fawzy MM, Abdel Hay RM, Saadi D, et al. B cell activating factor and T-helper 17 cells: possible synergistic culprits in the pathogenesis of Alopecia Areata. Arch. Dermatol. Res. 2016;308(2):115-21.

60. Tanemura A, Oiso N, Nakano M, Itoi S, Kawada A, and Katayama I. Alopecia areata: infiltration of Th17 cells in the dermis, particularly around hair follicles. Dermatology 2013;226(4):333-6.

61. Ito T, Suzuki T, Sakabe JI, Funakoshi A, Fujiyama T, and Tokura Y. Plasmacytoid dendritic cells as a possible key player to initiate alopecia areata in the C3H/HeJ mouse. Allergol. Int. 2020;69(1):121-31.

62. Abou Rahal J, Kurban M, Kibbi AG, and Abbas O. Plasmacytoid dendritic cells in alopecia areata: missing link? J. Eur. Acad. Dermatol. Venereol. 2016;30(1):119-23.

63. Gao Z, Jin YQ, and Wu W. SOCS3 treatment prevents the development of alopecia areata by inhibiting CD8+ T cell-mediated autoimmune destruction. Oncotarget. 2017;8(20):33432-43.

64. McElwee KJ, Freyschmidt-Paul P, Hoffmann R, Kissling S, Hummel S, Vitacolonna M, et al. Transfer of CD8+ cells induces localized hair loss whereas CD4+/CD25- cells promote systemic alopecia areata and CD4+/CD25+ cells blockade disease onset in the C3H/HeJ mouse model. J. Invest. Dermatol. 2005;124(5):947-57.

65. Skinner RB, Jr., Light WH, Bale GF, Rosenberg EW, and Leonardi C. Alopecia areata and presence of cytomegalovirus DNA. JAMA. 1995;273(18):1419-20.

66. Ito T, and Tokura Y. Alopecia areata triggered or exacerbated by swine flu virus infection. J. Dermatol. 2012;39(10):863-4.

67. Kartal ED, Alpat SN, Ozgunes I, and Usluer G. Reversible alopecia universalis secondary to PEG-interferon alpha-2b and ribavirin combination therapy in a patient with chronic hepatitis C virus infection. Eur. J. Gastroenterol. Hepatol. 2007;19(9):817-20.

68. Azzawi S, Penzi LR, and Senna MM. Immune privilege collapse and alopecia development: Is stress a factor. Skin Appendage Disord. 2018;4(4):236-44.

69. Acharya P, and Mathur MC. Oxidative stress in alopecia areata: a systematic review and meta-analysis. Int. J. Dermatol. 2020;59(4):434-40.

70. Kawai T, and Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 2010;11(5):373-84.

71. Li Z, Guo J, and Bi L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed. Pharmacother. 2020;130:110542.

72. Wu YW, Tang W, and Zuo JP. Toll-like receptors: potential targets for lupus treatment. Acta Pharmacol. Sin. 2015;36(12):1395-407.

73. Arleevskaya MI, Larionova RV, Brooks WH, Bettacchioli E, and Renaudineau Y. Toll-like receptors, infections, and rheumatoid arthritis. Clin. Rev. Allergy Immunol. 2020;58(2):172-81.

74. Yehualashet AS. Toll-like receptors as a potential drug target for diabetes mellitus and diabetes-associated complications. Diabetes Metab. Syndr. Obes. 2020;13:4763-77.

75. Sun L, Liu W, and Zhang LJ. The role of Toll-like receptors in skin host defense, psoriasis, and atopic dermatitis. J. Immunol. Res. 2019;2019:1824624.

76. Frasca L, and Lande R. Toll-like receptors in mediating pathogenesis in systemic sclerosis. Clin. Exp. Immunol. 2020;201(1):14-24.

77. Alzolibani AA, Rasheed Z, Bin Saif G, Al-Dhubaibi MS, and Al Robaee AA. Altered expression of intracellular Toll-like receptors in peripheral blood mononuclear cells from patients with alopecia areata. BBA Clin. 2016;5:134-42.

78. Kang H, Wu WY, Yu M, Shapiro J, and McElwee KJ. Increased expression of TLR7 and TLR9 in alopecia areata. Exp. Dermatol. 2020;29(3):254-8.

79. Ghoreishi M, Martinka M, and Dutz JP. Type 1 interferon signature in the scalp lesions of alopecia areata. Br. J. Dermatol. 2010;163(1):57-62.

80. Little AJ, and Vesely MD. Cutaneous lupus erythematosus: Current and future pathogenesis-directed therapies. Yale. J. Biol. Med. 2020;93(1):81-95.

81. Shin JM, Choi DK, Sohn KC, Kim SY, Min Ha J, Ho Lee Y, et al. Double-stranded RNA induces inflammation via the NF-κB pathway and inflammasome activation in the outer root sheath cells of hair follicles. Sci. Rep. 2017;7:44127.

82. Lee D, Hong SK, Park SW, Hur DY, Shon JH, Shin JG, et al. Serum levels of IL- 18 and sIL-2R in patients with alopecia areata receiving combined therapy with oral cyclosporine and steroids. Exp. Dermatol. 2010;19(2):145-7.

83. Kim SK, Park HJ, Chung JH, Kim JW, Seok H, Lew BL, et al. Association between interleukin 18 polymorphisms and alopecia areata in Koreans. J. Interferon Cytokine Res. 2014;34(5):349-53.

84. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, et al. Toll-like receptor 9- dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 2007;8(5):487-96.

85. Jacquemin C, Rambert J, Guillet S, Thiolat D, Boukhedouni N, Doutre MS, et al. Heat shock protein 70 potentiates interferon alpha production by plasmacytoid dendritic cells: relevance for cutaneous lupus and vitiligo pathogenesis. Br. J. Dermatol. 2017;177(5):1367-75.

86. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, et al. Interferon- alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 2004;5(10):1061-8.

87. Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 2006;439(7073):208-11.

88. Honda K, Yanai H, Mizutani T, Negishi H, Shimada N, Suzuki N, et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc. Natl. Acad. Sci. U S A. 2004;101(43):15416-21.

89. Dumitriu IE, Baruah P, Bianchi ME, Manfredi AA, and Rovere-Querini P. Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. Eur. J. Immunol. 2005;35(7):2184-90.

90. Lee Y, Lee HE, Shin JM, Sohn KC, Im M, Kim CD, et al. Clinical significance of serum high-mobility group box 1 level in alopecia areata. J. Am. Acad. Dermatol. 2013;69(5):742-7.

91. Wikramanayake TC, Alvarez-Connelly E, Simon J, Mauro LM, Guzman J, Elgart G, et al. Heat treatment increases the incidence of alopecia areata in the C3H/HeJ mouse model. Cell Stress Chaperones 2010;15(6):985-91.

92. Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev. 2018;281(1):138-53.

93. Kanda N, Shimizu T, Tada Y, and Watanabe S. IL-18 enhances IFN-gamma- induced production of CXCL9, CXCL10, and CXCL11 in human keratinocytes. Eur. J. Immunol. 2007;37(2):338-50.

94. Sheng Y, Qi S, Hu R, Zhao J, Rui W, Miao Y, et al. Identification of blood microRNA alterations in patients with severe active alopecia areata. J. Cell Biochem. 2019;120(9):14421-30.

95. Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 2015;21(3):248-55.

96. Harmon CS, and Nevins TD. IL-1 alpha inhibits human hair follicle growth and hair fiber production in whole-organ cultures. Lymphokine Cytokine Res. 1993;12(4):197-203.

97. Shin JM, Choi DK, Sohn KC, Koh JW, Lee YH, Seo YJ, et al. Induction of alopecia areata in C3H/HeJ mice using polyinosinic-polycytidylic acid (poly[I:C]) and interferon-gamma. Sci. Rep. 2018;8(1):12518.

98. Kim JE, Lee YJ, Park HR, Lee DG, Jeong KH, and Kang H. The effect of JAK inhibitor on the survival, anagen re-entry, and hair follicle immune privilege restoration in human dermal papilla cells. Int. J. Mol. Sci. 2020;21(14):5137.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る