リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nectin-4 regulates cellular senescence-associated enlargement of cell size」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nectin-4 regulates cellular senescence-associated enlargement of cell size

Katasho, Ryoko Nagano, Taiki Iwasaki, Tetsushi Kamada, Shinji 神戸大学

2023.12.07

概要

Cellular senescence is defined as irreversible growth arrest induced by various stress, such as DNA damage and oxidative stress. Senescent cells exhibit various characteristic morphological changes including enlarged morphology. In our recent study, we identified Nectin-4 to be upregulated in cellular senescence by comparative transcriptomic analysis. However, there are few reports on the relationship between Nectin-4 and senescence. Therefore, we analyzed the function of Nectin-4 in senescence and its biological significance. When overexpressed with Nectin-4, the cells exhibited the enlarged cell morphology closely resembling senescent cells. In addition, the cell size enlargement during DNA damage-induced senescence was suppressed by knockdown of Nectin-4, while there were no significant changes in senescence induction. These results suggest that Nectin-4 is not involved in the regulation of senescence itself but contributes to the senescence-associated cell size increase. Furthermore, the Nectin-4-dependent cell size increase was found to be mediated by Src family kinase (SFK)/PI3 kinase (PI3K)/Rac1 pathway. To explore the functional consequences of cell size enlargement, we analyzed cell survival in Nectin-4-depleted senescent cells. Single-cell tracking experiments revealed that Nectin-4 knockdown induced apoptosis in senescent cells, and there is a strong positive correlation between cell size and survival rate. These results collectively indicate that Nectin-4 plays a causative role in the senescence-associated cell size enlargement via SFK/PI3K/Rac1, which can contribute to survival of senescent cells.

この論文で使われている画像

参考文献

1. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated

with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

2. Chen, Q. & Ames, B. N. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc.

Natl. Acad. Sci. UAS 91, 4130–4134 (1994).

3. Di Leonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term

induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551 (1994).

4. Campisi, J. et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature 571, 183–192 (2019).

5. Chan, A. S. L. & Narita, M. Short-term gain, long-term pain: The senescence life cycle and cancer. Genes Dev. 33, 127–143 (2019).

6. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582

(2018).

7. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

8. Baker, D. J. et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

9. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176

(2017).

10. Simons, J. W. I. M. The use of frequency distributions of cell diameters to characterize cell populations in tissue culture. Exp. Cell

Res. 45, 336–350 (1967).

11. Matsumura, T., Zerrudo, Z. & Hayflick, L. Senescent human diploid cells in culture: Survival. DNA synthesis and morphology. J.

Gerontol. 34, 328–334 (1979).

12. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

13. Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010).

14. Huang, K. & Lui, W.-Y. Nectins and Nectin-like molecules (Necls): Recent findings and their role and regulation in spermatogenesis.

Semin. Cell Dev. Biol. 59, 54–61 (2016).

15. Takai, Y. & Nakanishi, H. Nectin and afadin: Novel organizers of intercellular junctions. J. Cell Sci. 116, 17–27 (2003).

16. Noyce, R. S. & Richardson, C. D. Nectin 4 is the epithelial cell receptor for measles virus. Trends Microbiol. 20, 429–439 (2012).

17. Reymond, N. et al. Nectin4/PRR4, a new afadin-associated member of the Nectin family that trans-interacts with Nectin1/PRR1

through V domain interaction. J. Biol. Chem. 276, 43205–43215 (2001).

18. Nagano, T. et al. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci. Rep. 6, 31758 (2016).

Scientific Reports |

(2023) 13:21602 |

https://doi.org/10.1038/s41598-023-48890-z

13

Vol.:(0123456789)

www.nature.com/scientificreports/

19. Nagano, T. et al. Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. J. Cell Sci. 130,

1413–1420 (2017).

20. Nagano, T. et al. D-amino acid oxidase promotes cellular senescence via the production of reactive oxygen species. Life Sci. Alliance

2, e201800045 (2019).

21. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA

92, 9363–9367 (1995).

22. Kurz, D. J., Decary, S., Hong, Y. & Erusalimsky, J. D. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal

mass during replicative ageing of human endothelial cells. J. Cell Sci. 113, 3613–3622 (2000).

23. Abdrabou, A. & Wang, Z. Post-translational modification and subcellular distribution of Rac1: An update. Cells 7, 263 (2018).

24. Bustelo, X. R., Sauzeau, V. & Berenjeno, I. M. GTP-binding proteins of the Rho/Rac family: Regulation, effectors and functions

in vivo. BioEssays 29, 356–370 (2007).

25. Shekarabi, M. & Kennedy, T. E. The Netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42

and Rac1. Mol. Cell. Neurosci. 19, 1–17 (2002).

26. Frank, S. R., Adelstein, M. R. & Hansen, S. H. GIT2 represses Crk- and Rac1-regulated cell spreading and Cdc42-mediated focal

adhesion turnover. EMBO J. 25, 1848–1859 (2006).

27. Biran, A. et al. Quantitative identification of senescent cells in aging and disease. Aging Cell 16, 661–671 (2017).

28. Komseli, E.-S. et al. A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor microRNAs and proteins in situ during oncogene-induced senescence. BMC Genomics 19, 37 (2018).

29. Lau, L., Porciuncula, A., Yu, A., Iwakura, Y. & David, G. Uncoupling the senescence-associated secretory phenotype from cell cycle

exit via Interleukin-1 inactivation unveils its protumorigenic role. Mol. Cell. Biol. 39, e00586-e618 (2019).

30. Nakano, M. et al. Branched-chain amino acids enhance premature senescence through mammalian target of rapamycin complex

I-mediated upregulation of p21 protein. PLoS One 8, e80411 (2013).

31. Fukuhara, T. et al. Activation of Cdc42 by trans interactions of the cell adhesion molecules Nectins through c-Src and Cdc42-GEF

FRG. J. Cell Biol. 166, 393–405 (2004).

32. Sakisaka, T. & Takai, Y. Biology and pathology of nectins and nectin-like molecules. Curr. Opin. Cell Biol. 16, 513–521 (2004).

33. Das, D., Satapathy, S. R., Siddharth, S., Nayak, A. & Kundu, C. N. NECTIN-4 increased the 5-FU resistance in colon cancer cells

by inducing the PI3K–AKT cascade. Cancer Chemother. Pharmacol. 76, 471–479 (2015).

34. Zhang, Y. et al. A novel PI3K/AKT signaling axis mediates Nectin-4-induced gallbladder cancer cell proliferation, metastasis and

tumor growth. Cancer Lett. 375, 179–189 (2016).

35. Pleiman, C. M., Hertz, W. M. & Cambier, J. C. Activation of phosphatidylinositol-3′ kinase by Src-family kinase SH3 binding to

the p85 subunit. Science 263, 1609–1612 (1994).

36. Lu, Y. et al. Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades.

J. Biol. Chem. 278, 40057–40066 (2003).

37. Smart, J. E. et al. Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous sarcoma virus (pp60vsrc) and its normal cellular homologue (pp60c-src). Proc. Natl. Acad. Sci. UAS 78, 6013–6017 (1981).

38. Alessi, D. R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15, 6541–6551 (1996).

39. Takano, A. et al. Identification of Nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res. 69,

6694–6703 (2009).

40. Best, A., Ahmed, S., Kozma, R. & Lim, L. The Ras-related GTPase Rac1 binds tubulin. J. Biol. Chem. 271, 3756–3762 (1996).

41. D’Souza-Schorey, C., Boshans, R. L., McDonough, M., Stahl, P. D. & Van Aelst, L. A role for POR1, a Rac1-interacting protein, in

ARF6-mediated cytoskeletal rearrangements. EMBO J. 16, 5445–5454 (1997).

42. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276,

1425–1428 (1997).

43. Zhu, G. et al. An EGFR/PI3K/AKT axis promotes accumulation of the Rac1-GEF Tiam1 that is critical in EGFR-driven tumorigenesis. Oncogene 34, 5971–5982 (2015).

44. Ilić, D. et al. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J. Cell

Biol. 143, 547–560 (1998).

45. Jain, N., Iyer, K. V., Kumar, A. & Shivashankar, G. V. Cell geometric constraints induce modular gene-expression patterns via

redistribution of HDAC3 regulated by actomyosin contractility. Proc. Natl. Acad. Sci. USA 110, 11349–11354 (2013).

46. Bao, M., Xie, J., Piruska, A. & Huck, W. T. S. 3D microniches reveal the importance of cell size and shape. Nat. Commun. 8, 1962

(2017).

47. Hodes, R. J. et al. Disease drivers of aging. Ann. N. Y. Acad. Sci. 1386, 45–68 (2016).

48. Collado, M. et al. Tumour biology: Senescence in premalignant tumours. Nature 436, 642 (2005).

49. Challita-Eid, P. M. et al. Enfortumab vedotin antibody-drug conjugate targeting Nectin-4 is a highly potent therapeutic agent in

multiple preclinical cancer models. Cancer Res. 76, 3003–3013 (2016).

50. Sethy, C. et al. Clinical significance of a pvrl 4 encoded gene Nectin-4 in metastasis and angiogenesis for tumor relapse. J. Cancer

Res. Clin. Oncol. 146, 245–259 (2020).

51. Rosenberg, J. E. et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/

programmed death ligand 1 therapy. J. Clin. Oncol. 37, 2592–2600 (2019).

52. Ginzberg, M. B., Kafri, R. & Kirschner, M. Cell biology. On being the right (cell) size. Science 348, 1245075 (2015).

Acknowledgements

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers

25640063, 17K15595, 20K07591, 20K15791, and 21K05308, the Uehara Memorial Foundation, Leave a Nest

Grant from Leave a Nest Co., Ltd. and Hyogo Science and Technology Association #4067.

Author contributions

S.K. conceived and designated the experiments. R.K., T.N., T.I., and S.K. performed the experiments. R.K., T.N.,

T.I., and S.K. analyzed the data. R.K., T.N., T.I., and S.K. contributed reagents/materials/analysis tools. R.K., T.N.,

and S.K. wrote the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​023-​48890-z.

Scientific Reports |

Vol:.(1234567890)

(2023) 13:21602 |

https://doi.org/10.1038/s41598-023-48890-z

14

www.nature.com/scientificreports/

Correspondence and requests for materials should be addressed to S.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Scientific Reports |

(2023) 13:21602 |

https://doi.org/10.1038/s41598-023-48890-z

15

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る