リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「注射可能なFluvastatin含有多孔性生体吸収性複合材料の骨増生への効果について」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

注射可能なFluvastatin含有多孔性生体吸収性複合材料の骨増生への効果について

周, 天任 ZHOU, TIANREN シュウ, テンニン 九州大学

2020.03.23

概要

The purpose of this study was to evaluate the effects of an injectable composite made up of calcium sulfate (CAS), fluvastatin (FS) and atelocollagen on bone augmentation in rats. Porous structures and the compressive strength of composites were evaluated. The cumulative release kinetics of FS were determined in vitro by a spectrophotometer.

To observe bone regeneration in vivo, five different materials (normal saline; atelocollagen gel only; composite of CAS and atelocollagen; composite containing 0.5% FS; and composite containing 1.0% FS) were injected in extraction sockets and on the crania of rats. Microcomputed tomography (micro-CT) and histological evaluation were performed after 2, 4, and 8 weeks of healing time. The composites had high porosity (greater than 55%). FS kept a slow and stable release for >30 days. In vivo results demonstrated that, more new bone was formed in the FS groups compared with other groups, both bone mass and bone density had prominent increased in maxillae and crania. Resorption of the composite was also observed for cranial tissues. In conclusion, this composite can be applied percutaneously, without any incision. It has excellent properties with replaceability into bone and anabolic effects for bone formation, as well as a drug delivery system for bone formation.

参考文献

(1) Van der Weijden, F.; Dell'Acqua, F.; Slot, D.E. Alveolar bone dimensional changes of post- extraction sockets in humans: a systematic review. J. Clin. Periodontol. 2009, 36 (12), 1048-1058. DOI: 10.1111/j.1600-051X.2009.01482.x

(2) Nkenke, E.; Neukam, F.W. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. Eur. J. Oral Implantol. 2014, 7, 203- 217. DOI: 10.1111/adj.121911

(3) Zamborsky, R.; Svec, A.; Bohac, M.; Kilian, M.; Kokavec, M. Infection in Bone Allograft Transplants. Exp. Clin. Transplant 2016, 14 (5), 484-490. DOI: 10.6002/ect.2016.00761

(4) Grover, V.; Kapoor, A.; Malhotra, R.; Sachdeva, S. Bone allografts: a review of safety and efficacy. Indian J. Dent. Res. 2011, 22 (3), 496. DOI: 10.4103/0970-9290.87084

(5) Dutta, S.R.; Passi, D.; Singh, P.; Bhuibhar, A. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review. Ir. J. Med. Sci. 2015, 184 (1), 101-106. DOI: 10.1007/s11845-014-1199-8

(6) Shimazaki, K.; Mooney, V.J. Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute. Orthop Res. 1985, 3 (3), 301-310.

(7) Turner, T.M.; Urban, R.M.; Gitelis, S.; Haggard, W.O.; Richelsoph, K. Resorption evaluation of a large bolus of calcium sulfate in a canine medullary defect. Orthopedics 2003, 26 (5), 577-579. DOI: 10.3928/0147-7447-20030502-10

(8) Bell, W.H. Resorption characteristics of bone and bone substitutes. Oral Surg., Oral Med., Oral Pathol. 1964, 17 (5), 650-657. DOI: 10.1016/0030-4220(64)90372-x

(9) Kumar, C.Y.; K.B.N; Menon, J.; Patro, D.K.; B.H.B. Calcium sulfate as bone graft substitute in the treatment of osseous bone defects, a prospective study. J. Clin. Diagn. Res. 2013, 7 (12), 2926-2928. DOI: 10.7860/JCDR/2013/6404.37911

(10) Sidqui, M.; Collin, P.; Vitte, C.; Forest, N. Osteoblast adherence and resorption activity of isolated osteoclasts on calcium sulphate hemihydrate. Biomaterials 1995, 16 (17), 1327- 1332. DOI: 10.1016/0142-9612(95)91048-4

(11) Strocchi, R.; Orsini, G.; Iezzi, G.; Scarano, A.; Rubini, C.; Pecora, G.; Piattelli, A. Bone regeneration with calcium sulfate: evidence for increased angiogenesis in rabbits. J. Oral Implantol. 2002, 28 (6), 273-278. DOI: 10.1563/1548- 1336(2002)028<0273:BRWCSE>2.3.CO;2

(12) Zhang, J.; Wang, L.; Zhang, W.; Zhang, M.; Luo, Z.P. Synchronization of calcium sulphate cement degradation and new bone formation is improved by external mechanical regulation. J. Orthop. Res. 2015, 33 (5), 685-691. DOI: 10.1002/jor.22839

(13) Hu, G.; Xiao, L.; Fu, H.; Bi, D.; Ma, H.; Tong, P. Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair. Journal of materials science. Mater. Med. 2010, 21 (2), 627-634. DOI: 10.1007/s10856-009-3885-z

(14) Hing, K. A.; Wilson, L. F.; Buckland, T. Comparative performance of three ceramic bone graft substitutes. Spine J 2007, 7 (4), 475-490. DOI: 10.1016/j.spinee.2006.07.017

(15) Artas, G.; Gul, M.; Acikan, I.; Kirtay, M.; Bozoglan, A.; Simsek, S.; Yaman, F.; Dundar, S. A comparison of different bone graft materials in peri-implant guided bone regeneration. Braz. Oral Res. 2018, 32, 59. DOI: 10.1590/1807-3107bor-2018.vol32.0059

(16) Sirtori, C.R. The pharmacology of statins. Pharmacol. Res. 2014, 88, 3-11. DOI: 10.1016/j.phrs.2014.03.002

(17) Shah, S.R.; Werlang, C.A.; Kasper, F.K.; Mikos, A.G. Novel applications of statins for bone regeneration. Natl. Sci. Rev. 2015, 2 (1), 85-99. DOI: 10.1093/nsr/nwu028

(18) Skoglund, B.; Aspenberg, P. Locally applied Simvastatin improves fracture healing in mice. BMC Musculoskeletal Disord. 2007, 8, 98. DOI: 10.1186/1471-2474-8-98

(19) Yasunami, N.; Ayukawa, Y.; Furuhashi, A.; Atsuta, I.; Rakhmatia, Y.D.; Moriyama, Y.; Masuzaki, T.; Koyano, K. Acceleration of hard and soft tissue healing in the oral cavity by a single transmucosal injection of fluvastatin-impregnated poly (lactic-co-glycolic acid) microspheres. An in vitro and rodent in vivo study. Biomed Mater. 2015, 11 (1), 015001. DOI: 10.1088/1748-6041/11/1/015001

(20) Moriyama, Y.; Ayukawa, Y.; Ogino, Y.; Atsuta, I.; Koyano, K. Topical application of statin affects bone healing around implants. Clin. Oral Implants Res. 2008, 19 (6), 600-605. DOI: 10.1111/j.1600-0501.2007.01508.x

(21) Masuzaki, T.; Ayukawa, Y.; Moriyama, Y.; Jinno, Y.; Atsuta, I.; Ogino, Y.; Koyano, K. The effect of a single remote injection of statin-impregnated poly (lactic-co-glycolic acid) microspheres on osteogenesis around titanium implants in rat tibia. Biomaterials 2010, 31 (12), 3327-3334. DOI: 10.1016/j.biomaterials.2010.01.016

(22) Ayukawa, Y.; Yasukawa, E.; Moriyama, Y.; Ogino, Y.; Wada, H.; Atsuta, I.; Koyano, K. Local application of statin promotes bone repair through the suppression of osteoclasts and the enhancement of osteoblasts at bone-healing sites in rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2009, 107 (3), 336-342. DOI: 10.1016/j.tripleo.2008.07.013

(23) Jinno, Y.; Ayukawa, Y.; Ogino, Y.; Atsuta, I.; Tsukiyama, Y.; Koyano, K. Vertical bone augmentation with fluvastatin in an injectable delivery system: a rat study. Clin. Oral Implants Res. 2009, 20 (8), 756-760. DOI: 10.1111/j.1600-0501.2008.01665.x

(24) Nam, E.; Fujita, N.; Morita, M.; Tsuzuki, K.; Lin, H.Y.; Chung, C.S.; Nakagawa, T.; Nishimura, R. Comparison of the canine corneal epithelial cell sheets cultivated from limbal stem cells on canine amniotic membrane, atelocollagen gel, and temperature- responsive culture dish. Vet Ophthalmol. 2015, 18 (4), 317-325. DOI: 10.1111/vop.12241

(25) Suh, D.S.; Lee, J.K.; Yoo, J.C.; Woo, S.H.; Kim, G.R.; Kim, J.W.; Choi, N.Y.; Kim, Y.; Song, H.S. Atelocollagen Enhances the Healing of Rotator Cuff Tendon in Rabbit Model. Am. J. Sports Med. 2017, 45 (9), 2019-2027. DOI: 10.1177/0363546517703336

(26) Park, H.Y.; Shetty, A.A.; Kim, J.M.; Kim, Y.J.; Jang, J.D.; Choi, N.Y.; Lee, J.H.; Kim, S.J. Enhancement of Healing of Long Tubular Bone Defects in Rabbits Using a Mixture of Atelocollagen Gel and Bone Marrow Aspirate Concentrate. Cells Tissues Organs. 2017, 203 (6), 339-352. DOI: 10.1159/000455829

(27) Kagawa, R.; Kishino, M.; Sato, S.; Ishida, K.; Ogawa, Y.; Ikebe, K.; Oya, K.; Ishimoto, T.; Nakano, T.; Maeda, Y.; Komori, T.; Toyosawa, S. Chronological histological changes during bone regeneration on a non-crosslinked atelocollagen matrix. J. Bone Miner. Metab. 2012, 30 (6), 638-650. DOI: 10.1007/s00774-012-0376-y

(28) Xu, R.Q.; Deng, Y.W.; Zhan, X.G.; Xu, L.Y.; Lu. J.Y. Soft soil three-dimensional porosity calculated based on SEM image and its influence factors analysis. Chin. J. Rock Mech. Eng. 2015, 34 (7), 22. DOI: 10.13722/j.cnki.jrme.2014.1302

(29) Park, S.N.; Park, J.C.; Kim, H.O.; Song, M.J.; Suh, H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials 2002, 23 (4), 1205-1212. DOI: 10.1016/S0142- 9612(01)00235-6

(30) Srivastava, R. K. ; Chatzis, I .; Dullien, F. A. L . A computerized technique for measuring in-situ concentrations during miscible displacements in porous media. Transport in Porous Media 1992, 7 (2), 127-145. DOI: 10.1007/BF00647393

(31) Hino, J.; Murata, M.; Akazawa,T.; Tazaki, J.; Arisue, M. Bone Induction by Biomimetic Functionally Graded Hydroxyapatite with rhBMP-2 on Rat Skull Periosteum. Journal of Japanese Society of Oral Implantology. 2008, 21 (2), 327-337. DOI: 10.11237/jsoi.21.327

(32) Ginebra, M.P.; Fernández, E.; De Maeyer, E.A.; Verbeeck, R.M.; Boltong, M.G.; Ginebra, J.; Driessens, F.C.; Planell, J.A. Setting reaction and hardening of an apatitic calcium phosphate cement. J. Dent. Res. 1997, 76 (4), 905-912. DOI: 10.1177/00220345970760041201

(33) Pryor, L.S.; Gage, E.; Langevin, C.J.; Herrera, F.; Breithaupt, A.D.; Gordon, C.R.; Afifi, A.M.; Zins, J.E.; Meltzer, H.; Gosman, A.; Cohen, S.R.; Holmes, R. Review of bone substitutes. Craniomaxillofac. Trauma Reconstr. 2009, 2 (3), 151-160. DOI: 10.1055/s- 0029-1224777

(34) Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. Part B Rev. 2013, 19 (6), 485-502. DOI: 10.1089/ten.TEB.2012.0437

(35) Chen, F.; Mao, T.; Tao, K.; Chen, S.; Ding, G.; Gu. X. Bone graft in the shape of human mandibular condyle reconstruction via seeding marrow-derived osteoblasts into porous coral in a nude mice model. J. Oral Maxillofac. Surg. 2002, 60 (10), 1155-1159. DOI: 10.1053/joms.2002.349911

(36) Chang, B.S.; Lee, C.K.; Hong, K.S.; Youn, H.J.; Ryu, H.S.; Chung, S.S.; Park, K.W. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000, 21 (12), 1291-1298. DOI: 10.1016/S0142-9612(00)00030-2

(37) Hulbert, S.F.; Morrison, S.J.; Klawitter, J.J. Tissue reaction to three ceramics of porous and non-porous structures. J. Biomed. Mater. Res. 1972, 6 (5), 347-374. DOI: 10.1002/jbm.820060505

(38) Kuboki, Y.; Saito, T.; Murata, M.; Takita, H.; Mizuno, M.; Inoue, M.; Nagai, N.; Poole, AR. Two distinctive BMP-carriers induce zonal chondrogenesis and membranous ossification, respectively; geometrical factors of matrices for cell-differentiation. Connect Tissue Res. 1995, 32 (1-4), 219-226. DOI: 10.3109/030082095090137261

(39) Yamada, M.; Egusa, H. Current bone substitutes for implant dentistry. J Prosthodont Res. 2018, 62 (2), 152-161. DOI: 10.1016/j.jpor.2017.08.010

(40) Yamasaki, H.; Sakai, H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials 1992, 13, 308-312. DOI: 10.1016/0142-9612(92)90054-R

(41) Ishikawa, K.; Asaoka, K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J. Biomed. Mater. Res. 1995, 29 (12), 1537-1543. DOI: 10.1002/jbm.820291210

(42) Bishop, A.R.; Kim, S.; Squire, M.W.; Rose, W.E.; Ploeg, H.L. Vancomycin elution, activity and impact on mechanical properties when added to orthopedic bone cement. J. Mech. Behav. Biomed. Mater. 2018, 87, 80-86. DOI: 10.1016/j.jmbbm.2018.06.033

(43) Gebhardt A. Understanding Additive Manufacturing. München: Carl Hanser Verlag GmbH & Co. KG; 2011. doi.org/10.3139/9783446431621

(44) Lopez-Heredia, M.A.; Sa, Y.; Salmon, P.; de Wijn, J.R.; Wolke, J.G.; Jansen, J.A. Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Acta Biomater. 2012, 8 (8), 3120-3127. DOI: 10.1016/j.actbio.2012.05.007

(45) Yaszemski, M.J.; Payne, R.G.; Hayes, W.C.; Langer, R.; Mikos, A.G. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 1996, 17 (2), 175-185. DOI: 10.1016/0142-9612(96)85762-0

(46) Hesaraki, S.; Moztarzadeh, F.; Nemati, R.; Nezafati, N.J. Preparation and characterization of calcium sulfate-biomimetic apatite nanocomposites for controlled release of antibiotics. Biomed. Mater. Res. B Appl. Biomater. 2009, 91 (2), 651-661. DOI: 10.1002/jbm.b.31441

(47) Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 2006, 309 (1-2), 44-50. DOI: 10.1016/j.ijpharm.2005.10.044

(48) van de Belt, H.; Neut, D.; Uges, D.R.; Schenk, W.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. Biomaterials 2000, 21 (19), 1981-1987. DOI: 10.1016/S0142-9612(00)00082-X

(49) Yu, M.; Zhou, K.; Li, Z.; Zhang, D. Preparation, characterization and in vitro gentamicin release of porous HA microspheres. Mater. Sci. Eng. C 2014, 45, 306-312. DOI: 10.1016/j.msec.2014.08.075

(50) Sasano, Y.; Kamakura, S.; Homma, H.; Suzuki, O.; Mizoguchi, I.; Kagayama, M. Implanted octacalcium phosphate (OCP) stimulates osteogenesis by osteoblastic cells and/or committed osteoprogenitors in rat calvarial periosteum. Anat Rec. 1999, 256 (1):1- 6. DOI: 10.1002/(SICI)1097-0185(19990901)256:1<1::AID-AR1>3.0.CO;2-X

(51) Costantino, P.D.; Friedman, C.D.; Jones, K.; Chow, L.C.; Pelzer, H.J.; Sisson Sr, G.A. Hydroxyapatite cement. I. Basic chemistry and histologic properties. Arch Otolaryngol Head Neck Surg. 1991, 117 (4), 379-384. DOI: 10.1001/archotol.1991.01870160033004

(52) Matsuoka, H.; Akiyama, H.; Okada, Y.; Ito, H.; Shigeno, C.; Konishi, J.; Kokubo, T.; Nakamura, T. In vitro analysis of the stimulation of bone formation by highly bioactive apatite- and wollastonite-containing glass-ceramic: released calcium ions promote osteogenic differentiation in osteoblastic ROS17/2.8 cells. J Biomed Mater Res. 1999, 47 (2), 176-88. DOI: 10.1002/(SICI)1097-4636(199911)47:2<176::AID-JBM7>3.0.CO;2-Z

(53) Maeno, S.; Niki, Y.; Matsumoto, H.; Morioka, H.; Yatabe, T.; Funayama, A.; Toyama, Y.; Taguchi, T.; Tanaka, J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials 2005, 26 (23), 4847-4855. DOI: 10.1016/j.biomaterials.2005.01.006

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る