リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Influence of abutment material and implant diameter on implant deformation, abutment removal torque loss and static loading strength in conical connection implant-abutment assemblies after simulated long-term oral use」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Influence of abutment material and implant diameter on implant deformation, abutment removal torque loss and static loading strength in conical connection implant-abutment assemblies after simulated long-term oral use

翟, 智豪 大阪大学

2022.03.24

概要

BACKGROUND: Zirconia implant abutment has been a well-adopted treatment option for its favorable esthetics. However, mechanical complications after long-term oral use, such as implant body deformation, abutment screw loosening, and strength degradation, remain as the primary concern. Existing studies have predominantly focused on only one aspect of mechanical performance and regular-diameter implant systems. Therefore, this study aimed to comprehensively investigate the influence of abutment material on the mechanical degradation of implant-abutment assemblies of different diameters after a simulated long-term oral use.

EXPERIMENT 1
Purpose: To investigate the influence of abutment material on implant body deformation and conical contact surface morphological change in implant-abutment assemblies of regular and narrow diameters after a simulated long-term oral use.

Material and methods: Six groups (n = 5 each) of CAD/CAM made abutments of three materials (T: one-piece titanium, CARES Ti, Straumann; Z: one-piece zirconia, CARES ZrCh,Straumann; C: zirconia with a titanium alloy base, CARES ZrC)2 with Variobase, Straumann) and two diameters were fixed on implants of corresponding diameters (Bone Level Tapered Roxolid 10 mm, Straumann; Regular diameter, R: 4.1 mm, Narrow diameter, N: 3.3 mm) and then subjected to a standardized artificial aging process consisted of thermal cycling (TTS-1, THOMAS KAGAKU, 5 °C ⇆ 55 °C, 2 min × 12,000 cycles) and mechanical cyclic loading (ElectroPuls E3000, INSTRON) with parameters corresponding to anterior (75 N 1.67 Hz × 0.8 million cycles) and posterior (150 N 1.67 Hz × 0.8 million cycles) mastication circumstances simulating a long-term oral use. μϋΤ (R_mCT2, RIGAKU) scans of implant bodies were performed both before and after aging. 3D images of implant bodies before and after aging were generated from the μϋΤ scans and 3-dimensionally aligned to calculate the amount of deformation. An observation of morphological change on implant conical contact surfaces was performed after aging using a scanning electron microscope (SEM, JSM6510LV, JEOL). Data were analyzed with one-way ANOVA tests with post hoc Tukey (HSD) tests (a = 0.05).

Results: All samples survived artificial aging. Implant deformation amounts were 0.5116 ± 0.0991 mm3 (ZR), 0.5582 ± 0.1532 mm3 (TR), 0.6993 ± 0.0896 mm3 (CR), 0.4879 ± 0.0546 mm3 (ZN), 0.8841 ± 0.3283 mm3 (CN), and 1.0478 ± 0.1454 mm3 (TN). No significant difference was confirmed among regular groups (p = 0.095). In narrow groups, group ZN showed significantly less deformation than groups TN and CN (p < 0.0001). In SEM observation, groups ZR and ZN showed widespread distinct surface damage while only minor damage was confirmed in the other groups.

Conclusion: One-piece zirconia abutments showed better resistance to implant deformation in narrow diameter after a simulated long-term oral use than those with metal connections.

EXPERIMENT 2
Purpose: To investigate the influence of abutment material on abutment removal torque loss in implant-abutment assemblies of regular and narrow diameters after a simulated long-term oral use.

Material and methods: Abutment removal torque test was done three times before aging and one time after aging using a digital torque meter (TME2, TOHNICHI) with all experiment 1 samples. The initial tightening torque was 35 Ncm as recommended by the manufacturer. Average of the three torque values measured before aging was adopted as initial abutment removal torque. Initial and post-aging torque loss values were calculated and analyzed using one-way ANOVA tests with post hoc Tukey (HSD) tests (a=0.05).

Results: Initial torque loss values were 3.22 ± 0.98 Ncm (TR), 3.22 土 0.62 Ncm (CR), 5.85 土 0.39 Ncm (ZR), 1.13± 0.23 Ncm (CN), 1.34 ± 0.32 Ncm (TN), and 5.29 ± 0.20 Ncm (ZN). Groups ZR (p < 0.0001) and ZN (p < 0.0001)showed significantly greater initial torque loss. Post-aging torque loss values were 15.34 土 4.98 % (CR),15.59 ±4.71 % (TR), 36.20 ± 3.75 % (ZR),11.11 ±3.41 % (TN), 13.55 ± 3.19 % (CN) and 42.01 ±2.18% (ZN). Groups ZR (p < 0.0001)and ZN (p < 0.0001) showed significantly greater post-aging torque loss.

Conclusion: Regardless of implant diameter, one-piece zirconia abutments tend to induce larger abutment removal torque loss than those with metal connections both initially and after a simulated long-term oral use.

EXPERIMENT 3
Purpose: To investigate the influence of abutment material on static loading strength degradation in implant-abutment assemblies of regular and narrow diameters after a simulated long-term oral use.

Material and methods: Samples survived aging in experiment 1, and 30 identical brand-new samples (n = 5 each) were subjected to a static loading test (ElectroPuls E3000, INSTRON) till failure. Maximum load values were analyzed with two-way ANOVA tests with post hoc Tukey (HSD) tests (a=0.05).

Results: In regular groups, maximum load values were 556.49 ± 11.57 N (ZR), 840.68 ± 29.34 N (CR), 849.34 ± 42.51 N (TR) for brand-new samples and 530.51 ± 53.81 N (ZR), 774.99 ± 28.03 N (TR), 802.83 ± 48.02 N (CR) for aged samples. In the narrow groups, maximum load values were 311.17 ± 22.18 N (ZN), 421.63 ± 6.36 N (CN), 440.48 ± 14.13 N (TN) for brand-new samples, and 317.28 ± 22.21 N (ZN), 425.39 ± 14.56 N (TN), 434.27 ± 12.19 N (CN) for aged samples. Significant static loading strength degradation after aging was not confirmed for all tested abutment materials and implant diameters (p > 0.05). One-piece zirconia groups showed significantly lower strength than the other two materials (p < 0.0001).

Conclusion: Regardless of implant diameter, one-piece zirconia abutments showed lower static loading strength than those with metal connections before and after a simulated long-term oral use. The degradation of static loading strength in implant-abutment assemblies of the tested materials and diameters after a simulated long-term oral use was limited.

GENERAL CONCLUSION
Concerns about one-piece zirconia abutment inducing larger implant deformation and static loading strength degradation after long-term oral use may be unnecessary. On the other hand, adopting such abutments may lead to more abutment removal torque loss and lower strength.

参考文献

1. Howe MS, Keys W, Richards D. Long-term (10-year) dental implant survival: A systematic review and sensitivity meta-analysis. J Dent. 2019;84:9-21. doi:10.1016/j.jdent.2019.03.008

2. Jung RE, Zembic A, Pjetursson BE, Zwahlen M, Thoma DS. Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. Clin Oral Implants Res. 2012;23 (S6):2-21. doi:10.1111/j.1600-0501.2012.02547.x

3. Pjetursson BE, Thoma D, Jung R, Zwahlen M, Zembic A. A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clin Oral Implants Res. 2012;23(S6):22-38. doi:10.1111/j.1600-0501.2012.02546.x

4. Papaspyridakos P, Chen CJ, Singh M, Weber HP, Gallucci GO. Success criteria in implant dentistry: a systematic review. J Dent Res. 2012;91(3):242-8. doi:10.1177/0022034511431252

5. Sadowsky SJ. Has zirconia made a material difference in implant prosthodontics? A review. Dent Mater. 2020;36(1):1-8. doi:10.1016/j.dental.2019.08.100

6. Romanos GE, DelgadoRuiz R, Sculean A. Concepts for prevention of complications in implant therapy. Periodontol 2000. 2019;81(1):7-17. doi:10.1111/prd.12278

7. Ferrari M, Vichi A, Zarone F. Zirconia abutments and restorations: from laboratory to clinical investigations. Dent Mater. 2015;31(3):e63-e76. doi:10.1016/j.dental.2014.11.015

8. Pjetursson BE, Zarauz C, Strasding M, Sailer I, Zwahlen M, Zembic A. A systematic review of the influence of the implant-abutment connection on the clinical outcomes of ceramic and metal implant abutments supporting fixed implant reconstructions. Clin Oral Implants Res. 2018;29(S18):160-83. doi:10.1111/clr.13362

9. Sailer I, Philipp A, Zembic A, Pjetursson BE, Hammerle CH, Zwahlen M. A systematic review of the performance of ceramic and metal implant abutments supporting fixed implant reconstructions. Clin Oral Implants Res. 2009;20(S4):4-31. doi:10.1111/j.1600-0501.2009.01787.x

10. Zembic A, Kim S, Zwahlen M, Kelly JR. Systematic review of the survival rate and incidence of biologic, technical, and esthetic complications of single implant abutments supporting fixed prostheses. Int J Oral Maxillofac Implants. 2014;29 Suppl:99-116. doi:10.11607/jomi.2014suppl.g2.2

11. Lops D, Stellini E, Sbricoli L, Cea N, Romeo E, Bressan E. Influence of abutment material on peri- implant soft tissues in anterior areas with thin gingival biotype: a multicentric prospective study. Clin Oral Implants Res. 2017;28(10):1263-8. doi:10.1111/clr.12952

12. Ma S, Tawse-Smith A, Brown SDK, Duncan W. Immediately restored single implants in the aesthetic zone of the maxilla using a novel design: 5-year results from a prospective single-arm clinical trial. Clin Implant Dent Relat Res. 2019;21(2):344-51. doi:10.1111/cid.12733

13. Sala L, Bascones-Martinez A, Carrillo-de-Albornoz A. Impact of abutment material on peri-implant soft tissue color. An in vitro study. Clin Oral Investig. 2017;21(7):2221-33. doi:10.1007/s00784-016- 2015-9

14. Totou D, Naka O, Mehta SB, Banerji S. Esthetic, mechanical, and biological outcomes of various implant abutments for single-tooth replacement in the anterior region: a systematic review of the literature. Int J Implant Dent. 2021;7(1):85. doi:10.1186/s40729-021-00370-7

15. Linkevicius T, Vaitelis J. The effect of zirconia or titanium as abutment material on soft peri-implant tissues: a systematic review and meta-analysis. Clin Oral Implants Res. 2015;26(S11):139-47. doi:10.1111/clr.12631

16. Glauser R, Sailer I, Wohlwend A, Studer S, Schibli M, Schärer P. Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study. Int J Prosthodont. 2004;17(3):285-90. https://quintpub.com/journals/ijp/abstract.php?article_id=1376#.YeTdBVhBy3I

17. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1-25. doi:10.1016/S0142-9612(98)00010-6

18. Elsayed A, Wille S, Al-Akhali M, Kern M. Comparison of fracture strength and failure mode of different ceramic implant abutments. J Prosthet Dent. 2017;117(4):499-506. doi:10.1016/j.prosdent.2016.06.018

19. Naveau A, Rignon-Bret C, Wulfman C. Zirconia abutments in the anterior region: A systematic review of mechanical and esthetic outcomes. J Prosthet Dent. 2019;121(5):775-81.e1. doi:10.1016/j.prosdent.2018.08.005

20. Sanz-Martin I, Sanz-Sanchez I, Carrillo de Albornoz A, Figuero E, Sanz M. Effects of modified abutment characteristics on peri-implant soft tissue health: A systematic review and meta-analysis. Clin Oral Implants Res. 2018;29(1):118-29. doi:10.1111/clr.13097

21. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol. 2004;75(2):292-6. doi:10.1902/jop.2004.75.2.292

22. Nilsson A, Johansson L-Å, Lindh C, Ekfeldt A. One-piece internal zirconia abutments for single-tooth restorations on narrow and regular diameter implants: A 5-year prospective follow-up study. Clin Implant Dent Relat Res. 2017;19(5):916-25. doi:10.1111/cid.12515

23. Gou M, Chen H, Fu M, Wang H. Fracture of Zirconia Abutments in Implant Treatments: A Systematic Review. Implant Dent. 2019;28(4):378-87. doi:10.1097/ID.0000000000000900

24. Sailer I, Asgeirsson AG, Thoma DS, Fehmer V, Aspelund T, Ozcan M, Pjetursson BE. Fracture strength of zirconia implant abutments on narrow diameter implants with internal and external implant abutment connections: A study on the titanium resin base concept. Clin Oral Implants Res. 2018;29(4):411-23. doi:10.1111/clr.13139

25. Rojo R, Prados-Privado M, Reinoso AJ, Prados-Frutos JC. Evaluation of Fatigue Behavior in Dental Implants from In Vitro Clinical Tests: A Systematic Review. Metals. 2018;8(5):313. doi:10.3390/met8050313

26. Coray R, Zeltner M, Ozcan M. Fracture strength of implant abutments after fatigue testing: A systematic review and a meta-analysis. J Mech Behav Biomed Mater. 2016;62:333-46. doi:10.1016/j.jmbbm.2016.05.011

27. Cha HS, Kim YS, Jeon JH, Lee JH. Cumulative survival rate and complication rates of single-tooth implant; focused on the coronal fracture of fixture in the internal connection implant. J Oral Rehabil. 2013;40(8):595-602. doi:10.1111/joor.12065

28. Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5- year survival and complication rates of implant-supported single crowns. Clin Oral Implants Res. 2008;19(2):119-30. doi:10.1111/j.1600-0501.2007.01453.x

29. Zabler S, Rack T, Rack A, Nelson K. Fatigue induced deformation of taper connections in dental titanium implants. Int J Mater Res. 2012;103(2):207-16. doi:10.3139/146.110666

30. Lee JH, Kim YT, Jeong SN, Kim NH, Lee DW. Incidence and pattern of implant fractures: A long- term follow-up multicenter study. Clin Implant Dent Relat Res. 2018;20(4):463-9. doi:10.1111/cid.12621

31. Broggini N, McManus LM, Hermann JS, Medina R, Schenk RK, Buser D, Cochran DL. Peri-implant inflammation defined by the implant-abutment interface. J Dent Res. 2006;85(5):473-8. doi:10.1177/154405910608500515

32. Broggini N, McManus LM, Hermann JS, Medina RU, Oates TW, Schenk RK, Buser D, Mellonig JT, Cochran DL. Persistent acute inflammation at the implant-abutment interface. J Dent Res. 2003;82(3):232-7. doi:10.1177/154405910308200316

33. Ozcan M, Melo RM, Souza RO, Machado JP, Felipe Valandro L, Botttino MA. Effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. J Mech Behav Biomed Mater. 2013;20:19-28. doi:10.1016/j.jmbbm.2013.01.005

34. Klotz MW, Taylor TD, Goldberg AJ. Wear at the titanium-zirconia implant-abutment interface: a pilot study. Int J Oral Maxillofac Implants. 2011;26(5):970-5. http://quintpub.com/journals/omi/abstract.php?article_id=11361#.YeTe7VhBy3I

35. Nam RK, Lee SJ, Park EJ, Kwon HB, Yoon HI. Three-Dimensional Deformation and Wear of Internal Implant-Abutment Connection: A Comparative Biomechanical Study Using Titanium and Zirconia. Int J Oral Maxillofac Implants. 2018;33(6):1279-86. doi:10.11607/jomi.6349

36. Stimmelmayr M, Edelhoff D, Guth JF, Erdelt K, Happe A, Beuer F. Wear at the titanium-titanium and the titanium-zirconia implant-abutment interface: a comparative in vitro study. Dent Mater. 2012;28(12):1215-20. doi:10.1016/j.dental.2012.08.008

37. Pereira PHS, Amaral M, Baroudi K, Vitti RP, Nassani MZ, Silva-Concilio LRD. Effect of Implant Platform Connection and Abutment Material on Removal Torque and Implant Hexagon Plastic Deformation. Eur J Dent. 2019;13(3):349-53. doi:10.1055/s-0039-1700662

38. Bickford JH. Introduction to the design and behavior of bolted joints: non-gasketed joints. CRC press; 2007.

39. Gehrke P, Johannson D, Fischer C, Stawarczyk B, Beuer F. In vitro fatigue and fracture resistance of one- and two-piece CAD/CAM zirconia implant abutments. Int J Oral Maxillofac Implants. 2015;30(3):546-54. doi:10.11607/jomi.3942

40. Vechiato-Filho AJ, Pesqueira AA, De Souza GM, dos Santos DM, Pellizzer EP, Goiato MC. Are Zirconia Implant Abutments Safe and Predictable in Posterior Regions? A Systematic Review and Meta-Analysis. Int J Prosthodont. 2016;29(3):233-44. doi:10.11607/ijp.4349

41. Mishra SK, Chowdhary R, Kumari S. Microleakage at the Different Implant Abutment Interface: A Systematic Review. J Clin Diagn Res. 2017;11(6):ze10-ze15. doi:10.7860/jcdr/2017/28951.10054

42. Vinhas AS, Aroso C, Salazar F, Lopez-Jarana P, Rios-Santos JV, Herrero-Climent M. Review of the Mechanical Behavior of Different Implant-Abutment Connections. Int J Environ Res Public Health. 2020;17(22):8685. doi:10.3390/ijerph17228685

43. Sikora CL, Alfaro MF, Yuan JC, Barao VA, Sukotjo C, Mathew MT. Wear and Corrosion Interactions at the Titanium/Zirconia Interface: Dental Implant Application. J Prosthodont. 2018;27(9):842-52. doi:10.1111/jopr.12769

44. Dittmer MP, Dittmer S, Borchers L, Kohorst P, Stiesch M. Influence of the interface design on the yield force of the implant-abutment complex before and after cyclic mechanical loading. J Prosthodont Res. 2012;56(1):19-24. doi:10.1016/j.jpor.2011.02.002

45. Mitsias ME, Silva NR, Pines M, Stappert C, Thompson VP. Reliability and fatigue damage modes of zirconia and titanium abutments. Int J Prosthodont. 2010;23(1):56-9. http://quintpub.com/journals/ijp/abstract.php?article_id=7244#.YeTfRVhBy3I

46. Nguyen HQ, Tan KB, Nicholls JI. Load fatigue performance of implant-ceramic abutment combinations. Int J Oral Maxillofac Implants. 2009;24(4):636-46. http://quintpub.com/journals/omi/abstract.php?article_id=4631#.YeTfslhBy3I

47. Kim KS, Lim YJ, Kim MJ, Kwon HB, Yang JH, Lee JB, Yim SH. Variation in the total lengths of abutment/implant assemblies generated with a function of applied tightening torque in external and internal implant-abutment connection. Clin Oral Implants Res. 2011;22(8):834-9. doi:10.1111/j.1600- 0501.2010.02063.x

48. Ferrario VF, Sforza C, Serrao G, Dellavia C, Tartaglia GM. Single tooth bite forces in healthy young adults. J Oral Rehabil. 2004;31(1):18-22. doi:10.1046/j.0305-182x.2003.01179.x

49. Rosentritt M, Behr M, van der Zel JM, Feilzer AJ. Approach for valuating the influence of laboratory simulation. Dent Mater. 2009;25(3):348-52. doi:10.1016/j.dental.2008.08.009

50. ISO. ISO 14801:2016 Dentistry — Implants — Dynamic loading test for endosseous dental implants. International Organization for Standardization; 2016.

51. Souza JCM, Henriques M, Teughels W, Ponthiaux P, Celis J-P, Rocha LA. Wear and Corrosion Interactions on Titanium in Oral Environment: Literature Review. J Bio Tribo Corros. 2015;1(2):13. doi:10.1007/s40735-015-0013-0

52. Tawse-Smith A, Ma S, Duncan WJ, Gray A, Reid MR, Rich AM. Implications of Wear at the Titanium-Zirconia Implant-Abutment Interface on the Health of Peri-implant Tissues. Int J Oral Maxillofac Implants. 2017;32(3):599-609. doi:10.11607/jomi.5014

53. Mizumoto RM, Malamis D, Mascarenhas F, Tatakis DN, Lee DJ. Titanium implant wear from a zirconia custom abutment: A clinical report. J Prosthet Dent. 2020;123(2):201-5. doi:10.1016/j.prosdent.2018.11.008

54. Gratton DG, Aquilino SA, Stanford CM. Micromotion and dynamic fatigue properties of the dental implant-abutment interface. J Prosthet Dent. 2001;85(1):47-52. doi:10.1067/mpr.2001.112796

55. Hoyer SA, Stanford CM, Buranadham S, Fridrich T, Wagner J, Gratton D. Dynamic fatigue properties of the dental implant-abutment interface: joint opening in wide-diameter versus standard-diameter hex- type implants. J Prosthet Dent. 2001;85(6):599-607. doi:10.1067/mpr.2001.115250

56. Queiroz DA, Hagee N, Lee DJ, Zheng F. The behavior of a zirconia or metal abutment on the implant- abutment interface during cyclic loading. J Prosthet Dent. 2020;124(2):211-6. doi:10.1016/j.prosdent.2019.09.023

57. Gehrke SA, Poncio da Silva PM, Calvo Guirado JL, Delgado-Ruiz RA, Dedavid BA, Aline Nagasawa M, Shibli JA. Mechanical behavior of zirconia and titanium abutments before and after cyclic load application. J Prosthet Dent. 2016;116(4):529-35. doi:10.1016/j.prosdent.2016.02.015

58. Mattheos N, Larsson C, Ma L, Fokas G, Chronopoulos V, Janda M. Micromorphological differences of the implant-abutment junction and in vitro load testing for three different titanium abutments on Straumann tissue level implants. Clin Oral Implants Res. 2017;28(12):1523-31. doi:10.1111/clr.13021

59. Hess DP. Preload from Tightening and Removal Torque. J Fail Anal Prev. 2019;19(4):1055-66. doi:10.1007/s11668-019-00693-z

60. Byrne D, Jacobs S, O'Connell B, Houston F, Claffey N. Preloads generated with repeated tightening in three types of screws used in dental implant assemblies. J Prosthodont. 2006;15(3):164-71. doi:10.1111/j.1532-849X.2006.00096.x

61. Martin WC, Woody RD, Miller BH, Miller AW. Implant abutment screw rotations and preloads for four different screw materials and surfaces. J Prosthet Dent. 2001;86(1):24-32. doi:10.1067/mpr.2001.116230

62. Park JK, Choi JU, Jeon YC, Choi KS, Jeong CM. Effects of abutment screw coating on implant preload. J Prosthodont. 2010;19(6):458-64. doi:10.1111/j.1532-849X.2010.00595.x

63. Zipprich H, Rathe F, Pinz S, Schlotmann L, Lauer HC, Ratka C. Effects of Screw Configuration on the Preload Force of Implant-Abutment Screws. Int J Oral Maxillofac Implants. 2018;33(2):e25-e32. doi:10.11607/jomi.5837

64. Jorge JR, Barao VA, Delben JA, Assuncao WG. The role of implant/abutment system on torque maintenance of retention screws and vertical misfit of implant-supported crowns before and after mechanical cycling. Int J Oral Maxillofac Implants. 2013;28(2):415-22. doi:10.11607/jomi.2727

65. Pintinha M, Camarini ET, Sabio S, Pereira JR. Effect of mechanical loading on the removal torque of different types of tapered connection abutments for dental implants. J Prosthet Dent. 2013;110(5):383- 8. doi:10.1016/j.prosdent.2013.06.007

66. Yi Y, Heo SJ, Koak JY, Kim SK. Comparison of CAD/CAM abutment and prefabricated abutment in Morse taper internal type implant after cyclic loading: Axial displacement, removal torque, and tensile removal force. J Adv Prosthodont. 2019;11(6):305-12. doi:10.4047/jap.2019.11.6.305

67. Nakano R, Homma S, Takanashi T, Hirano T, Furuya Y, Yajima Y. Influence of eccentric cyclic loading on implant components: Comparison between titanium and zirconia abutments. Dent Mater J. 2021;40(1):235-44. doi:10.4012/dmj.2020-030

68. Butignon LE, Basilio Mde A, Pereira Rde P, Arioli Filho JN. Influence of three types of abutments on preload values before and after cyclic loading with structural analysis by scanning electron microscopy. Int J Oral Maxillofac Implants. 2013;28(3):e161-e170. doi:10.11607/jomi.2481

69. Huang Y, Wang J. Mechanism of and factors associated with the loosening of the implant abutment screw: A review. J Esthet Restor Dent. 2019;31(4):338-45. doi:10.1111/jerd.12494

70. Chevalier J, Cales B, Drouin JM. Low-temperature aging of Y-TZP ceramics. Article. J Am Ceram Soc. 1999;82(8):2150-4. doi:10.1111/j.1151-2916.1999.tb02055.x

71. Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HW. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater. 2011;7(2):858-65. doi:10.1016/j.actbio.2010.09.020

72. Koenig V, Wulfman CP, Derbanne MA, Dupont NM, Le Goff SO, Tang ML, Seidel L, Dewael TY, Vanheusden AJ, Mainjot AK. Aging of monolithic zirconia dental prostheses: Protocol for a 5-year prospective clinical study using ex vivo analyses. Contemp Clin Trials Commun. 2016;4:25-32. doi:10.1016/j.conctc.2016.06.001

73. Chevalier J. What future for zirconia as a biomaterial? Biomaterials. 2006;27(4):535-43. doi:10.1016/j.biomaterials.2005.07.034

74. Borchers L, Stiesch M, Bach FW, Buhl JC, Hubsch C, Kellner T, Kohorst P, Jendras M. Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomater. 2010;6(12):4547- 52. doi:10.1016/j.actbio.2010.07.025

75. Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater. 2010;26(8):807-20. doi:10.1016/j.dental.2010.04.006

76. Elsayed A, Younes F, Lehmann F, Kern M. Tensile Bond Strength of So-called Universal Primers and Universal Multimode Adhesives to Zirconia and Lithium Disilicate Ceramics. J Adhes Dent. 2017;19(3):221-8. doi:10.3290/j.jad.a38436

77. Lehmann F, Kern M. Durability of Resin Bonding to Zirconia Ceramic Using Different Primers. J Adhes Dent. 2009;11(6):479-83. doi:10.3290/j.jad.a17554

78. Carvalho MA, Sotto-Maior BS, Del Bel Cury AA, Pessanha Henriques GE. Effect of platform connection and abutment material on stress distribution in single anterior implant-supported restorations: a nonlinear 3-dimensional finite element analysis. J Prosthet Dent. 2014;112(5):1096-102. doi:10.1016/j.prosdent.2014.03.015

79. Santiago Junior JF, Verri FR, Almeida DA, de Souza Batista VE, Lemos CA, Pellizzer EP. Finite element analysis on influence of implant surface treatments, connection and bone types. Mater Sci Eng C Mater Biol Appl. 2016;63:292-300. doi:10.1016/j.msec.2016.02.061

80. Sen N, Us YO. Fatigue survival and failure resistance of titanium versus zirconia implant abutments with various connection designs. J Prosthet Dent. 2019;122(3):315.e1-7. doi:10.1016/j.prosdent.2019.05.036

81. Foong JKW, Judge RB, Palamara JE, Swain MV. Fracture resistance of titanium and zirconia abutments: An in vitro study. J Prosthet Dent. 2013;109(5):304-12. doi:10.1016/s0022- 3913(13)60306-6

82. Stimmelmayr M, Sagerer S, Erdelt K, Beuer F. In vitro fatigue and fracture strength testing of one- piece zirconia implant abutments and zirconia implant abutments connected to titanium cores. Int J Oral Maxillofac Implants. 2013;28(2):488-93. doi:10.11607/jomi.2772

83. Muhlemann S, Truninger TC, Stawarczyk B, Hammerle CH, Sailer I. Bending moments of zirconia and titanium implant abutments supporting all-ceramic crowns after aging. Clin Oral Implants Res. 2014;25(1):74-81. doi:10.1111/clr.12192

84. Elsayed A, Wille S, Al-Akhali M, Kern M. Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clin Oral Implants Res. 2018;29(1):20-7. doi:10.1111/clr.13034

85. Christel P, Meunier A, Heller M, Torre JP, Peille CN. Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res. 1989;23(1):45-61. doi:10.1002/jbm.820230105

86. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater. 2004;20(5):449-56. doi:10.1016/j.dental.2003.05.002

87. Dabrowski R, Krawczyk J, Rozniata E. Influence of the Ageing Temperature on the Selected Mechanical Properties of the Ti6Al7Nb Alloy. Key Eng Mater. 2015;641:120-3. doi:10.4028/www.scientific.net/KEM.641.120

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る