リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The plant-derived triterpenoid, cucurbitacin B, but not cucurbitacin E, inhibits the developmental transition associated with ecdysone biosynthesis in Drosophila melanogaster」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The plant-derived triterpenoid, cucurbitacin B, but not cucurbitacin E, inhibits the developmental transition associated with ecdysone biosynthesis in Drosophila melanogaster

Toyofuku, Miwako Fujinaga, Daiki Inaba, Kazue Funahashi, Tomoki Fujikawa, Yuuta Inoue, Hideshi Kataoka, Hiroshi Niwa, Ryusuke Ono, Hajime 京都大学 DOI:10.1016/j.jinsphys.2021.104294

2021.10

概要

In insects, some sterols are essential not only for cell membrane homeostasis, but for biosynthesis of the steroid hormone ecdysone. Dietary sterols are required for insect development because insects cannot synthesize sterols de novo. Therefore, sterol-like compounds that can compete with essential sterols are good candidates for insect growth regulators. In this study, we investigated the effects of the plant-derived triterpenoids, cucurbitacin B and E (CucB and CucE) on the development of the fruit fly, Drosophila melanogaster. To reduce the effects of supply with an excess of sterols contained in food, we reared D. melanogaster larvae on low sterol food (LSF) with or without cucurbitacins. Most larvae raised on LSF without supplementation or with CucE died at the second or third larval instar (L2 or L3) stages, whereas CucB-administered larvae mostly died without molting. The developmental arrest caused by CucB was partially rescued by ecdysone supplementation. Furthermore, we examined the effects of CucB on larval-prepupal transition by transferring larvae from LSF supplemented with cholesterol to that with CucB just after the L2/L3 molt. L3 larvae raised on LSF with CucB failed to pupariate, with a remarkable developmental delay. Ecdysone supplementation rescued the developmental delay but did not rescue the pupariation defect. Furthermore, we cultured the steroidogenic organ, the prothoracic gland (PG) of the silkworm Bombyx mori, with or without cucurbitacin. Ecdysone production in the PG was reduced by incubation with CucB, but not with CucE. These results suggest that CucB acts not only as an antagonist of the ecdysone receptor as previously reported, but also acts as an inhibitor of ecdysone biosynthesis.

この論文で使われている画像

参考文献

499

Behmer, S.T., Nes, W.D., 2003. Insect sterol nutrition and physiology: a global

500

overview. Adv. Insect Physiol. 31, 1–72. https://doi.org/10.1016/S0065-

501

2806(03)31001-X.

502

Caldwell, P.E., Walkiewicz, M., Stern, M., 2005. Ras activity in the Drosophila

503

prothoracic gland regulates body size and developmental rate via ecdysone release.

504

Curr. Biol. 15, 1785–1795. https://doi.org/10.1016/j.cub.2005.09.011.

505

Carvalho, M., Schwudke, D., Sampaio, J.L., Palm, W., Riezman, I., Dey, G., Gupta,

506

G.D., Mayor, S., Riezman, H., Shevchenko, A., Kurzchalia, T. V., Eaton, S., 2010.

507

Survival strategies of a sterol auxotroph. Development 137, 3675–3685.

508

https://doi.org/10.1242/dev.044560.

509

Chanut-Delalande, H., Hashimoto, Y., Pelissier-Monier, A., Spokony, R., Dib, A.,

510

Kondo, T., Bohère, J., Niimi, K., Latapie, Y., Inagaki, S., Dubois, L., Valenti, P.,

511

Polesello, C., Kobayashi, S., Moussian, B., White, K.P., Plaza, S., Kageyama, Y.,

512

Payre, F., 2014. Pri peptides are mediators of ecdysone for the temporal control of

513

development. Nat. Cell Biol. 16, 1035–1044. https://doi.org/10.1038/ncb3052.

514

515

516

517

518

Clayton, R.B., 1964. The utilization of sterols by insects. J. Lipid Res. 5, 3–19.

https://doi.org/10.1016/S0022-2275(20)40254-8.

Cooke, J., Sang, J., 1970. Utilization of sterols by larvae of Drosophila melanogaster. J.

Insect Physiol. 16, 801–812. https://doi.org/10.1016/0022-1910(70)90214-3.

Danielsen, E.T., Moeller, M.E., Yamanaka, N., Ou, Q., Laursen, J.M., Soenderholm, C.,

519

Zhuo, R., Phelps, B., Tang, K., Zeng, J., Kondo, S., Nielsen, C.H., Harvald, E.B.,

520

Faergeman, N.J., Haley, M.J., O’Connor, K.A., King-Jones, K., O’Connor, M.B.,

521

Rewitz, K.F., 2016. A Drosophila genome-wide screen identifies regulators of

23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

522

steroid hormone production and developmental timing. Dev. Cell 37, 558–570.

523

https://doi.org/10.1016/j.devcel.2016.05.015.

524

Dhadialla, T.S., Carlson, G.R., Le, D.P., 1998. New insecticides with ecdysteroidal and

525

juvenile hormone activity. Annu. Rev. Entomol. 43, 545–569. https://doi.org/DOI

526

10.1146/annurev.ento.43.1.545.

527

Dinan, L., Whiting, P., Girault, J.P., Lafont, R., Dhadialla, T.S., Cress, D.E., Mugat, B.,

528

Antoniewski, C., Lepesant, J.A., 1997a. Cucurbitacins are insect steroid hormone

529

antagonists acting at the ecdysteroid receptor. Biochem. J. 327, 643–650.

530

https://doi.org/10.1042/bj3270643.

531

Dinan, L., Whiting, P., Sarker, S.D., Kasai, R., Yamasaki, K., 1997b. Cucurbitane-type

532

compounds from Hemsleya carnosiflora antagonize ecdysteroid action in the

533

Drosophila melanogaster BII cell line. Cell. Mol. Life Sci. 53, 271–274.

534

https://doi.org/10.1007/PL00000603.

535

Enya, S., Ameku, T., Igarashi, F., Iga, M., Kataoka, H., Shinoda, T., Niwa, R., 2014. A

536

Halloween gene noppera-bo encodes a glutathione S-transferase essential for

537

ecdysteroid biosynthesis via regulating the behaviour of cholesterol in Drosophila.

538

Sci. Rep. 4. https://doi.org/10.1038/srep06586.

539

Enya, S., Daimon, T., Igarashi, F., Kataoka, H., Uchibori, M., Sezutsu, H., Shinoda, T.,

540

Niwa, R., 2015. The silkworm glutathione S-transferase gene noppera-bo is

541

required for ecdysteroid biosynthesis and larval development. Insect Biochem.

542

Mol. Biol. 61, 1–7. https://doi.org/10.1016/j.ibmb.2015.04.001.

543

Enya, S., Yamamoto, C., Mizuno, H., Esaki, T., Lin, H.K., Iga, M., Morohashi, K.,

544

Hirano, Y., Kataoka, H., Masujima, T., Shimada-Niwa, Y., Niwa, R., 2017. Dual

545

roles of glutathione in ecdysone biosynthesis and antioxidant function during larval

24

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

546

development in Drosophila. Genetics 207, 1519–1532.

547

https://doi.org/10.1534/genetics.117.300391

548

Ferguson, J.E., Metcalf, R.L., 1985. Cucurbitacins: Plant-derived defense compounds

549

for diabroticites (Coleoptera: Chrysomelidae). J. Chem. Ecol. 11, 311–318.

550

https://doi.org/10.1007/BF01411417.

551

Fujikawa, Y., Morisaki, F., Ogura, A., Morohashi, K., Enya, S., Niwa, R., Goto, S.,

552

Kojima, H., Okabe, T., Nagano, T., Inoue, H., 2015. A practical fluorogenic

553

substrate for high-throughput screening of glutathione S-transferase inhibitors.

554

Chem. Commun. 51, 11459–11462. https://doi.org/10.1039/c5cc02067k.

555

Hill, R.J., Billas, I.M.L., Bonneton, F., Graham, L.D., Lawrence, M.C., 2013. Ecdysone

556

receptors: from the Ashburner model to structural biology. Annu. Rev. Entomol.

557

58, 251–271. https://doi.org/10.1146/annurev-ento-120811-153610.

558

Hironaka, K.-I., Fujimoto, K., Nishimura, T., 2019. Optimal scaling of critical size for

559

metamorphosis in the genus Drosophila. iScience 20, 348–358.

560

https://doi.org/10.1016/j.isci.2019.09.033.

561

Hobson, R.P., 1935. On a fat-soluble growth factor required by blow-fly larvae. II.

562

identity of the growth factor with cholesterol. Biochem. J. 29, 2023–2026.

563

https://doi.org/10.1042/bj0292023.

564

Iga, M., Kataoka, H., 2012. Recent studies on insect hormone metabolic pathways

565

mediated by cytochrome P450 enzymes. Biol. Pharm. Bull. 35, 838–843.

566

https://doi.org/10.1248/bpb.35.838.

567

Imura, E., Shimada-Niwa, Y., Nishimura, T., Hückesfeld, S., Schlegel, P., Ohhara, Y.,

568

Kondo, S., Tanimoto, H., Cardona, A., Pankratz, M.J., Niwa, R., 2020. The

569

corazonin-PTTH neuronal axis controls systemic body growth by regulating basal

25

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

570

ecdysteroid biosynthesis in Drosophila melanogaster. Curr. Biol. 30, 2156–2165.

571

https://doi.org/10.1016/j.cub.2020.03.050.

572

Koiwai, K., Inaba, K., Morohashi, K., Enya, S., Arai, R., Kojima, H., Okabe, T.,

573

Fujikawa, Y., Inoue, H., Yoshino, R., Hirokawa, T., Kato, K., Fukuzawa, K.,

574

Shimada-Niwa, Y., Nakamura, A., Yumoto, F., Senda, T., Niwa, R., 2020. An

575

integrated approach unravels a crucial structural property required for the function

576

of the insect steroidogenic Halloween protein Noppera-bo. J. Biol. Chem. 295,

577

7154–7167. https://doi.org/10.1074/jbc.RA119.011463.

578

Koiwai, K., Morohashi, K., Inaba, K., Ebihara, K., Kojima, H., Okabe, T., Yoshino, R.,

579

Hirokawa, T., Nampo, T., Fujikawa, Y., Inoue, H., Yumoto, F., Senda, T., Niwa,

580

R., 2021. Non-steroidal inhibitors of Drosophila melanogaster steroidogenic

581

glutathione S-transferase Noppera-bo. J. Pestic. Sci. 46, 75–87.

582

https://doi.org/10.1584/jpestics.D20-072.

583

Lafont, R., Dauphin-Villemant, C., Warren, J.T., Rees, H., 2012. Ecdysteroid chemistry

584

and biochemistry, in: Gilbert, L.I. (Ed.), Insect Endocrinology. Academic Press,

585

San Diego, CA, pp. 106–176. https://doi.org/doi.org/10.1016/B978-0-12-384749-

586

2.10004-4.

587

Lavrynenko, O., Rodenfels, J., Carvalho, M., Dye, N.A., Lafont, R., Eaton, S.,

588

Shevchenko, A., 2015. The ecdysteroidome of Drosophila: Influence of diet and

589

development. Development 142, 3758–3768. https://doi.org/10.1242/dev.124982.

590

McBrayer, Z., Ono, H., Shimell, M., Parvy, J.P., Beckstead, R.B., Warren, J.T.,

591

Thummel, C.S., Dauphin-Villemant, C., Gilbert, L.I., O’Connor, M.B., 2007.

592

Prothoracicotropic hormone regulates developmental timing and body size in

26

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

593

Drosophila. Dev Cell 13, 857–871.

594

https://doi.org/doi.org/10.1016/j.devcel.2007.11.003.

595

596

597

Nakagawa, Y., 2005. Nonsteroidal ecdysone agonists. Vitam. Horm. 73, 131–173.

https://doi.org/10.1016/S0083-6729(05)73005-3.

Nishida, R., Fukami, H., 1990. Sequestration of distasteful compounds by some

598

pharmacophagous insects. J. Chem. Ecol. 16, 151–164.

599

https://doi.org/10.1007/BF01021276.

600

Nishida, R., Fukami, H., Tanaka, Y., Magalhães, B.P., Yokoyama, M., Blumenschein,

601

A., 1986. Isolation of feeding stimulants of Brazilian leaf beetles (Diabrotica

602

speciosa and Cerotoma arcuata) from the root of Ceratosanthes hilariana. Agric.

603

Biol. Chem. 50, 2831–2836. https://doi.org/10.1080/00021369.1986.10867816.

604

Niwa, R., Niwa, Y.S., 2014. Enzymes for ecdysteroid biosynthesis: their biological

605

functions in insects and beyond. Biosci. Biotechnol. Biochem. 78, 1283–1292.

606

https://doi.org/10.1080/09168451.2014.942250.

607

Niwa, R., Niwa, Y.S., 2011. The fruit fly Drosophila melanogaster as a model system

608

to study cholesterol metabolism and homeostasis. Cholesterol 2011.

609

https://doi.org/10.1155/2011/176802.

610

Niwa, Y.S., Niwa, R., 2016. Transcriptional regulation of insect steroid hormone

611

biosynthesis and its role in controlling timing of molting and metamorphosis. Dev.

612

Growth Differ. 58, 94–105. https://doi.org/10.1111/dgd.12248.

613

Niwa, Y.S., Niwa, R., 2014. Neural control of steroid hormone biosynthesis during

614

development in the fruit fly Drosophila melanogaster. Genes Genet. Syst. 89, 27–

615

34. https://doi.org/10.1266/ggs.89.17.

27

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

616

Ou, Q., Zeng, J., Yamanaka, N., Brakken-thal, C., Connor, M.B.O., King-jones, K.,

617

2016. The insect prothoracic gland as a model for steroid hormone biosynthesis

618

and regulation. Cell Rep. 16, 247–262.

619

https://doi.org/10.1016/j.celrep.2016.05.053.

620

Pan, X., Connacher, R.P., O’Connor, M.B., 2021. Control of the insect metamorphic

621

transition by ecdysteroid production and secretion. Curr. Opin. Insect Sci. 43, 11–

622

20. https://doi.org/10.1016/j.cois.2020.09.004.

623

Pan, X., Neufeld, T.P., O’Connor, M.B., 2019. A tissue- and temporal-specific

624

autophagic switch controls Drosophila pre-metamorphic nutritional checkpoints.

625

Curr. Biol. 29, 2840–2851. https://doi.org/10.1016/j.cub.2019.07.027.

626

Rewitz, K.F., Yamanaka, N., Gilbert, L.I., O’Connor, M.B., 2009. The insect

627

neuropeptide PTTH activates receptor tyrosine kinase torso to initiate

628

metamorphosis. Science 326, 1403–1405. https://doi.org/10.1126/science.1176450.

629

630

631

Ritz, C., Baty, F., Streibig, J.C., Gerhard, D., 2015. Dose-response analysis using R.

PLoS One 10, 1–13. https://doi.org/10.1371/journal.pone.0146021.

Rueden, C.T., Schindelin, J., Hiner, M.C., Dezonia, B.E., Walter, A.E., Arena, E.T.,

632

Eliceiri, K.W., 2017. ImageJ2 : ImageJ for the next generation of scientific image

633

data 1–26. https://doi.org/10.1186/s12859-017-1934-z.

634

Shimell, M.J., Pan, X., Martin, F.A., Ghosh, A.C., Leopold, P., O’Connor, M.B.,

635

Romero, N.M., 2018. Prothoracicotropic hormone modulates environmental

636

adaptive plasticity through the control of developmental timing. Development 145,

637

dev159699. https://doi.org/10.1242/dev.159699.

28

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

638

Smith, W., Rybczynski, R., 2012. Prothoracicotropic hormone, in: Gilbert, L.I. (Ed.),

639

Insect Endocrinology. Academic Press, San Diego, CA, pp. 1–62.

640

https://doi.org/doi.org/10.1016/B978-0-12-384749-2.10004-4.

641

Tarkowská, D., Strnad, M., 2016. Plant ecdysteroids: plant sterols with intriguing

642

distributions, biological effects and relations to plant hormones. Planta 244, 545–

643

555. https://doi.org/10.1007/s00425-016-2561-z.

644

Texada, M.J., Malita, A., Rewitz, K., 2019. Autophagy regulates steroid production by

645

mediating cholesterol trafficking in endocrine cells. Autophagy 15, 1478–1480.

646

https://doi.org/10.1080/15548627.2019.1617608.

647

Torssell, K.G.B., 1983. The mevalonic acid pathway: The terpenes, in: Natural Product

648

Chemistry: A Mechanistic, Biosynthetic and Ecological Approach. Swedish

649

Pharmaceutical Press, Stockholm, pp. 251–312.

650

Wing, K.D., Slawecki, R.A., Carlson, G.R., 1988. RH 5849, a nonsteroidal ecdysone

651

agonist: effects on larval lepidoptera. Science 241, 470–472.

652

https://doi.org/10.1126/science.241.4864.470.

653

Zou, C., Liu, G., Liu, Suning, Liu, Shumin, Song, Q., Wang, J., Feng, Q., Su, Y., Li, S.,

654

2018. Cucurbitacin B acts a potential insect growth regulator by antagonizing 20-

655

hydroxyecdysone activity. Pest Manag. Sci. 74, 1394–1403.

656

https://doi.org/10.1002/ps.4817.

657

658

29

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

% of lethality of animals

Cucurbitacin B (Cuc B)

Cucurbitacin E (Cuc E)

Fig. 1

20

40

60

80

100

EtOH

(80)

Ecd

(40)

CucE

(40)

CucB

(70)

CucB (0.1 mM)

(40)

CucB + Ecd

(70)

CLR

(65)

CucB + CLR

(50)

7dC

(40)

CucB + 7dC

(40)

L1

L1/L2

L2

L2/L3

L3

Prepupa

Pupa

Adult

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

100

Control

80

% of animals

L1

60

L2

40

L3

Pupa

20

Lost

48h

72h

96h

120h

144h

168h

(50)

(78)

(90)

(72)

(80)

(20)

100

+ Cuc B

80

% of animals

L1

60

L2

L3

40

Pupa

20

Lost

48h

72h

96h

120h

144h

168h

(50)

(62)

(90)

(80)

(80)

(30)

Fig. 2

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Fig. 3

Control

**

Larval area (mm2)

0.1

1.0

Absorbance at 630 nm

0.2

CucB-fed

0.5

Control

CucB

Control

CucB

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

% of lethality of animals

10

20

30

40

50

60

70

80

CLR

(30)

CucB

(50)

CucB+Ecd

(40)

Ecd

(30)

Pupa

Larval weight (mg)

(30)

Incomplete pupa

Fig. 4

90 100

EtOH

L3

1.5

1.0

b,c

0.5

0.0

48h

48h

Hours after L2/L3 molt

Adult

CucB

EtOH

Percentage of pupariation

100

80

EtOH (30)

60

CucB (25)

40

CucB+Ecd (25)

20

Ecd (29)

24h

48h

72h

96h

Hours after L2/L3 molt

120h

144h

ns

60

20E titer (pg / mg prepupa)

72h

40

20

EtOH

CucB

96h

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Fig. 5

ns

15

ns

Relative amount

ns

10

Control

CucB

25 mg / ml

(45 mM)

Control

CucB

2.5 mg / ml

(4.5 mM)

Control

CucE

25 mg / ml

(45 mM)

Control

CucE

2.5 mg / ml

(4.5 mM)

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Fig. 6

100

Relative activity (%)

80

60

CucB

CucE

40

17b-Estradiol

20

0.03

0.1

0.3

Concentration (mM)

10

30

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Drosophila melanogaster

Bombyx mori

Inhibition

Inhibition

Prothoracic glands

In vitro culture

Cucurbitacin B

Ecdysone biosynthesis

Larval development

No effect

Cucurbitacin E

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る