リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Involvement of the transcription factor E75 in adult cuticular formation in the red flour beetle Tribolium castaneum」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Involvement of the transcription factor E75 in adult cuticular formation in the red flour beetle Tribolium castaneum

Sapin, Gelyn D. Tomoda, Kai Tanaka, Sayumi Shinoda, Tetsuro Miura, Ken Minakuchi, Chieka 名古屋大学

2020.11

概要

Insect adult metamorphosis generally proceeds with undetectable levels of juvenile hormone (JH). In adult development of the red flour beetle Tribolium castaneum, biosynthesis of adult cuticle followed by its pigmentation and sclerotization occurs, and dark coloration of the cuticle becomes visible in pharate adults. Here, we examined the molecular mechanism of adult cuticular formation in more detail. We noticed that an exogenous JH mimic (JHM) treatment of Day 0 pupae did not inhibit pigmentation or sclerotization, but instead, induced precocious pigmentation of adult cuticle two days in advance. Quantitative RT-PCR analyses revealed that ecdysone-induced protein 75B (E75) is downregulated in JHM-treated pupae. Meanwhile, tyrosine hydroxylase (Th), an enzyme involved in cuticular pigmentation and sclerotization, was precociously induced, whereas a structural cuticular protein CPR27 was downregulated, by exogenous JHM treatment. RNA interference-mediated knockdown of E75 resulted in precocious adult cuticular pigmentation, which resembled the phenotype caused by JHM treatment. Notably, upregulation of Th as well as suppression of CPR27 were observed with E75 knockdown. Meanwhile, JHM treatment suppressed the expression of genes involved in melanin synthesis, such as Yellow-y and Laccase 2, but E75 knockdown did not result in marked reduction in their expression. Taken together, these results provided insights into the regulatory mechanisms of adult cuticular formation; the transcription of genes involved in adult cuticular formation proceeds in a proper timing with undetectable JH, and exogenous JHM treatment disturbs their transcription. For some of these genes such as Th and CPR27, E75 is involved in transcriptional regulation. This study shed light on the molecular mode of action of JHM as insecticides; exogenous JHM treatment disturbed the expression of genes involved in the adult cuticular formation, which resulted in lethality as pharate adults.

この論文で使われている画像

参考文献

467

Arakane, Y., Dittmer, N.T., Tomoyasu, Y., Kramer, K.J., Muthukrishnan, S., Beeman, R.W.,

468

Kanost, M.R., 2010. Identification, mRNA expression and functional analysis of several

469

yellow family genes in Tribolium castaneum. Insect Biochem Mol Biol 40, 259-266.

470

https://doi.org/10.1016/j.ibmb.2010.01.012.

471

Arakane, Y., Lomakin, J., Gehrke, S.H., Hiromasa, Y., Tomich, J.M., Muthukrishnan, S.,

472

Beeman, R.W., Kramer, K.J., Kanost, M.R., 2012. Formation of rigid, non-flight forewings

473

(Elytra) of a beetle requires two major cuticular proteins. PLoS Genet. 8, e1002682.

474

https://doi.org/10.1371/journal.pgen.1002682.

475

Arakane, Y., Muthukrishnan, S., Beeman, R.W., Kanost, M.R., Kramer, K.J., 2005. Laccase 2 is

476

the phenoloxidase gene required for beetle cuticle tanning. Proc. Natl. Acad. Sci. U. S. A.

477

102, 11337–11342. https://doi.org/10.1073/pnas.0504982102.

16

478

479

480

Belles, X., 2020. Insect Metamorphosis. From Natural History to Regulation of Development

and Evolution, 1st ed. Academic Press, London.

Bialecki, M., Shilton, A., Fichtenberg, C., Segraves, W.A., Thummel, C.S., 2002. Loss of the

481

ecdysteroid-inducible E75A orphan nuclear receptor uncouples molting from metamorphosis

482

in Drosophila. Dev. Cell 3, 209–220. https://doi.org/10.1016/S1534-5807(02)00204-6.

483

Bitondi, M.M.G., Mora, I.M., Simões, Z.L.P., Figueiredo, V.L.C., 1998. The Apis mellifera

484

pupal melanization program is affected by treatment with a juvenile hormone analogue. J.

485

Insect Physiol. 44, 499–507. https://doi.org/10.1016/S0022-1910(97)00113-3.

486

Bouhin, H., Charles, J.P., Quennedey, B., Delachambre, J., 1992. Developmental profiles of

487

epidermal mRNAs during the pupal-adult molt of Tenebrio molitor and isolation of a cDNA

488

clone encoding an adult cuticular protein: Effects of a juvenile hormone analogue. Dev.

489

Biol. 149, 112–122. https://doi.org/10.1016/0012-1606(92)90268-L.

490

491

492

Futahashi, R., Fujiwara, H., 2008. Juvenile hormone regulates butterfly larval pattern switches.

Science 319, 1061. https://doi.org/10.1126/science.1149786.

Gorman, M.J., Arakane, Y., 2010. Tyrosine hydroxylase is required for cuticle sclerotization and

493

pigmentation in Tribolium castaneum. Insect Biochem. Mol. Biol. 40, 267–273.

494

https://doi.org/10.1016/j.ibmb.2010.01.004.

495

Hiruma, K., Riddiford, L.M., 2009. The molecular mechanisms of cuticular melanization: The

496

ecdysone cascade leading to dopa decarboxylase expression in Manduca sexta. Insect

497

Biochem. Mol. Biol. 39, 245–253. https://doi.org/10.1016/j.ibmb.2009.01.008.

498

Hiruma, K., Riddiford, L.M., Hopkins, T.L., Morgan, T.D., 1985. Roles of dopa decarboxylase

499

and phenoloxidase in the melanization of the tobacco hornworm and their control by 20-

500

hydroxyecdysone. J. Comp. Physiol. B 155, 659–669. https://doi.org/10.1007/BF00694579.

501

502

503

Jindra, M., Bellés, X., Shinoda, T., 2015. Molecular basis of juvenile hormone signaling. Curr.

Opin. Insect Sci. 11, 39–46. https://doi.org/10.1016/j.cois.2015.08.004.

Jindra, M., Bittova, L., 2020. The juvenile hormone receptor as a target of juvenoid "insect

504

growth regulators". Arch Insect Biochem Physiol 103, e21615.

505

https://doi.org/10.1002/arch.21615.

506

Jindra, M., Palli, S.R., Riddiford, L.M., 2013. The juvenile hormone signaling pathway in insect

507

development. Annu. Rev. Entomol. 58, 181-204. https://doi.org/10.1146/annurev-ento-

508

120811-153700.

17

509

Keshan, B., Hiruma, K., Riddiford, L.M., 2006. Developmental expression and hormonal

510

regulation of different isoforms of the transcription factor E75 in the tobacco hornworm

511

Manduca sexta. Dev. Biol. 295, 623–632. https://doi.org/10.1016/j.ydbio.2006.03.049.

512

King-Jones, K., Thummel, C.S., 2005. Nuclear receptors - A perspective from Drosophila. Nat.

513

Rev. Genet. 6, 311–323. https://doi.org/10.1038/nrg1581.

514

Klowden, M.J., 2007. Physiological Systems in Insects, 2nd ed. Academic Press, Massachusetts.

515

Konopova, B., Jindra, M., 2007. Juvenile hormone resistance gene Methoprene-tolerant controls

516

entry into metamorphosis in the beetle Tribolium castaneum. Proc. Natl. Acad. Sci. U. S. A.

517

104, 10488-10493.

518

Konopova, B., Jindra, M., 2008. Broad-Complex acts downstream of Met in juvenile hormone

519

signaling to coordinate primitive holometabolan metamorphosis. Development 135, 559–

520

568. https://doi.org/10.1242/dev.016097.

521

Li, M., Mead, E.A., Zhu, J., 2011. Heterodimer of two bHLH-PAS proteins mediates juvenile

522

hormone-induced gene expression. Proc. Natl. Acad. Sci. U. S. A. 108, 638-643.

523

https://doi.org/10.1073/pnas.1013914108.

524

Li, K., Tian, L., Guo, Z., Guo, S., Zhang, J., Gu, S.H., Palli, S.R., Cao, Y., Li, S., 2016. 20-

525

Hydroxyecdysone (20E) Primary Response Gene E75 isoforms mediate steroidogenesis

526

autoregulation and regulate developmental timing in bombyx. J. Biol. Chem. 291, 18163–

527

18175. https://doi.org/10.1074/jbc.M116.737072.

528

Mané-Padrós, D., Cruz, J., Vilaplana, L., Pascual, N., Bellés, X., Martín, D., 2008. The nuclear

529

hormone receptor BgE75 links molting and developmental progression in the direct-

530

developing insect Blattella germanica. Dev. Biol. 315, 147–160.

531

https://doi.org/10.1016/j.ydbio.2007.12.015.

532

Minakuchi, C., Namiki, T., Shinoda, T., 2009. Krüppel homolog 1, an early juvenile hormone-

533

response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in

534

the red flour beetle Tribolium castaneum. Dev. Biol. 325, 341–350.

535

https://doi.org/10.1016/j.ydbio.2008.10.016.

536

Minakuchi, C., Zhou, X., Riddiford, L.M., 2008. Krüppel homolog 1 (Kr-h1) mediates juvenile

537

hormone action during metamorphosis of Drosophila melanogaster. Mech. Dev. 125, 91-

538

105.

539

Nijhout, H.F., 1994. Insect Hormones. Princeton University Press, Princeton, New Jersey.

18

540

Noh, M.Y., Kramer, K.J., Muthukrishnan, S., Kanost, M.R., Beeman, R.W., Arakane, Y., 2014.

541

Two major cuticular proteins are required for assembly of horizontal laminae and vertical

542

pore canals in rigid cuticle of Tribolium castaneum. Insect Biochem. Mol. Biol. 53, 22–29.

543

https://doi.org/10.1016/j.ibmb.2014.07.005.

544

Noh, M.Y., Muthukrishnan, S., Kramer, K.J., Arakane, Y., 2016. Cuticle formation and

545

pigmentation in beetles. Curr. Opin. Insect Sci. 17, 1–9.

546

https://doi.org/10.1016/j.cois.2016.05.004.

547

Noh, M.Y., Muthukrishnan, S., Kramer, K.J., Arakane, Y., 2015. Tribolium castaneum RR-1

548

Cuticular Protein TcCPR4 Is Required for Formation of Pore Canals in Rigid Cuticle. PLoS

549

Genet. 11, e1004963. https://doi.org/10.1371/journal.pgen.1004963.

550

Parthasarathy, R., Tan, A., Bai, H., Palli, S.R., 2008. Transcription factor broad suppresses

551

precocious development of adult structures during larval-pupal metamorphosis in the red

552

flour beetle, Tribolium castaneum. Mech. Dev. 125, 299–313.

553

https://doi.org/10.1016/j.mod.2007.11.001.

554

Reinking, J., Lam, M.M.S., Pardee, K., Sampson, H.M., Liu, S., Yang, P., Williams, S., White,

555

W., Lajoie, G., Edwards, A., Krause, H.M., 2005. The Drosophila nuclear receptor E75

556

contains heme and is gas responsive. Cell 122, 195–207.

557

https://doi.org/10.1016/j.cell.2005.07.005.

558

Riddiford, L.M., 1996. Molecular aspects of Juvenile Hormone Action in Insect Metamorphosis,

559

in: Gilbert, L.I., Jamshed, R.T., Atkinson, B.G. (Eds.), Metamorphosis: postembryonic

560

reprogramming of gene expression in amphibian and insect cells. Academic Press, San

561

Diego, California, pp. 223–253.

562

563

564

Riddiford, L.M., Cherbas, P., Truman, J.W., 2000. Ecdysone Receptors and Their Biological

Actions. Vitam. Horm. 60, 1–73.

Riddiford, L.M., Hiruma, K., Zhou, X., Nelson, C.A., 2003. Insights into the molecular basis of

565

the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila

566

melanogaster. Insect Biochem Mol Biol 33, 1327-1338.

567

Song, Y., Villeneuve, D.L., Toyota, K., Iguchi, T., Tollefsen, K.E., 2017. Ecdysone Receptor

568

Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse

569

Outcome Pathway Development. Environ. Sci. Technol. 51, 4142–4157.

570

https://doi.org/10.1021/acs.est.7b00480.

19

571

Suzuki, Y., Truman, J.W., Riddiford, L.M., 2008. The role of broad in the development of

572

Tribolium castaneum: Implications for the evolution of the holometabolous insect pupa.

573

Development 135, 569–577. https://doi.org/10.1242/dev.015263.

574

Tan, A., Palli, S.R., 2008. Edysone receptor isoforms play distinct roles in controlling molting

575

and metamorphosis in the red flour beetle, Tribolium castaneum. Mol. Cell. Endocrinol. 291,

576

42–49. https://doi.org/10.1016/j.mce.2008.05.006.

577

Ureña, E., Chafino, S., Manjón, C., Franch-Marro, X., Martín, D., 2016. The Occurrence of the

578

Holometabolous Pupal Stage Requires the Interaction between E93, Krüppel-Homolog 1

579

and Broad-Complex. PLoS Genet. 12, e1006020.

580

https://doi.org/10.1371/journal.pgen.1006020.

581

Xu, Q., Tang, B., Zou, Q., Zheng, H., Liu, X., Wang, S., 2015. Effects of Pyriproxyfen on female

582

reproduction in the common cutworm, Spodoptera litura (F.) (Lepidoptera: Noctuidae).

583

PLoS One 10, e0138171. https://doi.org/10.1371/journal.pone.0138171.

584

Yokoi, K., Koyama, H., Minakuchi, C., Tanaka, T., Miura, K., 2012. Antimicrobial peptide gene

585

induction, involvement of Toll and IMD pathways and defense against bacteria in the red

586

flour beetle, Tribolium castaneum. Results Immunol. 2, 72–82.

587

https://doi.org/10.1016/j.rinim.2012.03.002.

588

Zhang, Z., Xu, J., Sheng, Z., Sui, Y., Palli, S.R., 2011. Steroid receptor co-activator is required

589

for juvenile hormone signal transduction through a bHLH-PAS transcription factor,

590

methoprene tolerant. J. Biol. Chem. 286, 8437-8447.

591

https://doi.org/10.1074/jbc.M110.191684.

592

Zhou, B., Hiruma, K., Jindra, M., Shinoda, T., Segraves, W.A., Malone, F., Riddiford, L.M., 1998.

593

Regulation of the transcription factor E75 by 20-hydroxyecdysone and juvenile hormone in

594

the epidermis of the tobacco hornworm, Manduca sexta, during larval molting and

595

metamorphosis. Dev. Biol. 193, 127-138.

596

Zufelato, M.S., Bitondi, M.M.G., Simões, Z.L.P., Hartfelder, K., 2000. The juvenile hormone

597

analog pyriproxyfen affects ecdysteroid-dependent cuticle melanization and shifts the pupal

598

ecdysteroid peak in the honey bee (Apis mellifera). Arthropod Struct. Dev. 29, 111–119.

599

https://doi.org/10.1016/S1467-8039(00)00023-2.

600

601

20

602

Figure legends

603

Figure 1. Phenotypes of Tribolium castaneum pupae that underwent topical application of JH or

604

JHM. Newly molted pupae within 12 h after molting were treated with solvent, pyriproxyfen, or

605

JH III. (A–C) Ventral view of pupae observed from pupa day 1 (P1) to pupa day 5 (P5) that had

606

received the solvent methanol (A), 40 pmol pyriproxyfen (B), and 0.80 nmol of JH III (C). (D–K)

607

Ventral view of pupae observed at P3 that had been treated with solvent (D), pyriproxyfen at 40

608

pmol (E), 0.12 nmol (F), 0.40 nmol (G), and 1.2 nmol (H), 0.40 nmol of fenoxycarb (I), 0.40 nmol

609

of (S)-hydroprene (J), and 40 pmol of (S)-(+)-methoprene (K). The numerator is the number of

610

phenotypes that were observed among the samples, and the denominator is the total number of test

611

insects used in the experiment.

612

613

Figure 2. Expression profiles of selected genes in the whole body of Tribolium castaneum pupae

614

after JHM treatment. Newly molted pupae within 12 h after molting were treated with 40 pmol of

615

pyriproxyfen or an equal volume of solvent. RNA extraction from the whole body followed by

616

quantitative RT-PCR were conducted at different pupal ages from pupa day 1 (P1) to pupa day 5

617

(P5). The transcript levels of Kr-h1 (A), br (B), E93 (C), E75 (D), HR3 (E), Ftz-f1 (F), Th (G),

618

DDC (H), Lac2 (I), CPR27 (J), and Y-y (K) were examined. Asterisks over the bars indicate

619

statistically significant differences from the solvent-treated controls (*P<0.05, **P<0.01,

620

***P<0.001, and ****P<0.0001; Student’s t-test). Means and standard errors of the mean (SEM)

621

are shown (N=6). P-values are available in Table S2.

622

623

Figure 3. Expression profiles of selected genes in the legs of Tribolium castaneum pupae after

624

JHM treatment. Newly molted pupae within 12 h after molting were treated with 40 pmol of

625

pyriproxyfen or an equal volume of solvent. RNA extraction from pooled legs followed by

626

quantitative RT-PCR were conducted from pupa day 3 (P3) to pupa day 5 (P5). The transcript

627

levels of Kr-h1 (A), br (B), E93 (C), E75 (D), Th (E), DDC (F), Lac2 (G), and CPR27 (H) were

628

examined. Asterisks over the bars indicate statistically significant differences from the solvent-

629

treated controls (*P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001; Student’s t-test). Means

630

and standard errors of the mean (SEM) are shown (N=6). P-values are available in Table S3.

21

631

632

Figure 4. Ventral view of the Tribolium castaneum pupae and an adult that were treated with

633

dsRNA of malE (A) and E75 (B). The prepupae were injected with approximately 100 nl of 5

634

µg/µl dsRNA. P stands for pupa; A stands for adult; 0 to 5, day age; scale bars, 500 µm.

635

636

Figure 5. Expression profiles of selected genes in the whole body of Tribolium castaneum pupae

637

and adults after E75 knockdown. Prepupae were injected with dsRNA of malE or E75. RNA was

638

extracted from the whole body, and quantitative RT-PCR was conducted from day 0 pupa (P0) to

639

day 0 adult or day 5 pupa (A0/P5). The transcript levels of Kr-h1 (A), br (B), E93 (C), E75 (D),

640

HR3 (E), Ftz-f1 (F), Th (G), DDC (H), Lac2 (I), CPR27 (J), and Y-y (K) were examined. Inset of

641

panel J shows the levels at A0/P5 by enlarging the Y-axis. Asterisks over the bars indicate

642

statistically significant differences from the dsmalE-treated controls (*P<0.05, **P<0.01,

643

***P<0.001, and ****P<0.0001; Student’s t-test). Means and standard errors of the mean (SEM)

644

are shown. Six samples each were used for P0 to P4, but only three samples were used for A0/P5.

645

P-values are available in Table S4.

646

647

Figure 6. Expression profiles of selected genes in the legs of Tribolium castaneum pupae after E75

648

knockdown. Prepupae were injected with dsRNA of malE or E75. RNA was extracted from the

649

legs, and quantitative RT-PCR was conducted from P2 to P4. The transcript levels of Kr-h1 (A),

650

br (B), E93(C), E75 (D), Th (E), DDC (F), Lac2 (G), and CPR27 (H) were examined. Asterisks

651

over the bars indicate statistically significant differences from dsmalE-treated controls (*P<0.05,

652

**P<0.01, ***P<0.001, and ****P<0.0001; Student’s t-test). Means and standard errors of the

653

mean (SEM) are shown. Six samples each were used for P3 and P4, but only three samples were

654

used for P2. P-values are available in Table S5.

655

656

Figure 7. A model for the regulatory pathway of adult cuticular formation in Tribolium castaneum.

657

(A) In normal pupae with undetectable JH, E75 induces adult cuticular formation in a proper

658

timing; the expression of CPR27, Y-y, and Lac2 is upregulated, and Th is suppressed. (B) In JHM-

22

659

or dsE75-treated pupae, E75 was downregulated compared with normal pupae, which disturbed

660

adult development of the cuticle; CPR27, Y-y, and Lac2 were downregulated, and Th was induced

661

precociously. E75 is involved in regulating the transcription of CPR27 and Th, but does not affect

662

the transcription of Y-y or Lac2. See the Discussion section for details.

663

664

Supplementary Materials

665

Figure S1. The structure of E75 isoforms of Tribolium castaneum.

666

Double-headed arrows represent the target region of quantitative RT-PCR primers, and the double

667

underlines show the region of E75 dsRNA. Arrowheads represent the position of the start codon

668

in each isoform, and asterisks show the stop codon. Numbers in bars are length in bp.

669

670

Figure S2. Expression profiles of selected genes in whole body of Tribolium castaneum pupae and

671

newly emerged adults.

672

RNA extraction from the whole body followed by quantitative RT-PCR were conducted at the

673

different ages from pupa day 0 (P0) to adult day 0 (A0). Expression profiles of Kr-h1 (A), br (B),

674

E93 (C), E75 common region (D), HR3 (E), Ftz-f1 (F), Th (G), DDC (H), Lac2 (I), CPR27 (J), Y-

675

y (K), E75 isoforms (L–P) were examined. Means and standard errors of the mean (SEM) are

676

shown (N=4).

677

678

Figure S3. Expression profiles of E75 isoforms using whole body pupae of Tribolium castaneum

679

after JHM treatment (A) and after E75 knockdown (B).

680

(A) Expression profiles in the whole body of Tribolium castaneum pupae after JHM treatment.

681

The same set of cDNAs as in Figure 2 was used. Newly molted pupae within 12 h after molting

682

were treated with 40 pmol of pyriproxyfen or an equal volume of solvent. Asterisks over the bars

683

indicate statistically significant differences from the solvent-treated controls (*P<0.05, **P<0.01,

684

and ***P<0.001; Student’s t-test). Means and standard errors of the mean (SEM) are shown (N=6).

685

P-values are available in Table S2.

23

686

(B) Expression profiles in the whole body of Tribolium castaneum pupae after E75 knockdown.

687

The same set of cDNAs as in Figure 5 was used. Prepupae were injected with dsRNA of malE or

688

E75. RNA was extracted from the whole body, and quantitative RT-PCR was conducted. Asterisks

689

over the bars indicate statistically significant differences from the dsmalE-treated controls

690

(*P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001; Student’s t-test). Means and standard errors

691

of the mean (SEM) are shown. Six samples each were used for P0 to P4, but only three samples

692

were used for A0/P5. P-values are available in Table S4.

693

694

Table S1 Primers used in this study.

695

696

Table S2 The P-values of the transcript levels of selected genes in the whole body of Tribolium

697

castaneum pupae after treatment of 40 pmol of pyriproxyfen or solvent. The P-values indicating

698

there is not statistically significant differences (P>0.05) are shadowed. The transcript levels are

699

shown as graphs in Figure 2 and Figure S3.

700

701

Table S3 The P-values of the transcript levels of selected genes in the legs of Tribolium

702

castaneum pupae after treatment of 40 pmol of pyriproxyfen or solvent. The P-values indicating

703

there is not statistically significant differences (P>0.05) are shadowed. The transcript levels are

704

shown as graphs in Figure 3.

705

706

Table S4 The P-values of the transcript levels of selected genes in the whole body of Tribolium

707

castaneum pupae after injecting dsRNA of malE and E75. The P-values indicating there is not

708

statistically significant differences (P>0.05) are shadowed. The transcript levels are shown as

709

graphs in Figure 5 and Figure S3.

710

711

Table S5 The P-values of the transcript levels of selected genes in the legs of Tribolium

712

castaneum pupae after injecting dsRNA of malE and E75. The P-values indicating there is not

24

713

statistically significant differences (P>0.05) are shadowed. The transcript levels are shown as

714

graphs in Figure 6.

715

716

25

Figure 1

Click here to access/download;Figure;Fig 1_R3_2.tiff

Figure 2

Figure 2

Solvent

Relative mRNA levels (/rpL32)

Relative mRNA levels (/rpL32)

Relative mRNA levels (/rpL32)

Pyriproxyfen

0.15

Kr-h1

0.40

***

0.40

**

0.30

****

E93

0.30

***

0.10

0.20

***

***

0.05

***

****

0.20

****

**

0.10

0.10

**

P1

1.50

P2

P3

P4

P1

P5

E75

0.60

1.25

0.50

1.00

0.40

0.75

0.30

***

0.25

****

***

P2

P3

P4

P5

0.30

Th

0.25

1.00

0.20

0.75

0.15

0.50

0.10

0.25

0.05

0.00

0.00

P1

P5

0.40

P2

P3

P4

P5

150

***

P1

P2

P3

****

P4

P5

P2

P3

P4

P5

Ftz-f1

0.00

P2

P3

P4

P1

P5

DDC

0.80

Lac2

0.60

0.40

**

0.20

***

***

**

0.00

P2

P3

P4

P5

Y-y

0.05

**

P5

****

100

P4

0.10

**

0.10

50

P3

0.20

P1

0.15

CPR27

P2

0.30

P1

1.25

200

P4

0.00

P1

P3

HR3

0.10

0.00

1.50

P2

0.20

0.50

**

0.00

0.00

0.00

P1

Relative mRNA levels (/rpL32)

br

***

0.00

P1

P2

P3

P4

***

P5

P1

P2

P3

P4

P5

Figure 3

Figure 3

Solvent

Relative mRNA levels (/rpL32)

Relative mRNA levels (/rpL32)

Relative mRNA levels (/rpL32)

Pyriproxyfen

0.10

Kr-h1

2.0

br

2.5

**

0.08

1.5

***

2.0

1.5

****

0.06

1.0

1.0

0.04

0.5

0.02

**

0.0

0.0

P3

P4

P3

P5

E75

P4

0.5

**

0.00

E93

P3

P5

Th

2.5

P4

P5

DDC

2.0

1.5

**

1.0

**

P4

P5

P3

Lac2

800

P4

P5

CPR27

600

1.0

400

0.5

**

200

0.0

P3

P4

P5

****

P3

**

P4

P5

0.0

P3

1.5

0.5

****

P3

P4

P5

Figure 4

Figure 4

dsmalE

P0

P1

P2

P3

P4

P1

P2

P3

P4

P5

dsE75

P0

Figure 5

Figure 5

dsmalE

Relative mRNA levels (/rpL32)

Relative mRNA levels (/rpL32)

dsE75

0.05

E93

0.40

0.30

**

0.30

0.03

0.20

0.20

0.02

0.10

0.01

0.00

2.00

P1

P2

P3

P4 A0/P5

P0

0.50

E75

P1

P2

P3

P0

P4 A0/P5

0.40

HR3

0.40

1.50

0.10

0.00

0.00

P0

P1

Ftz-f1

P2

P3

P4 A0/P5

****

0.30

0.30

1.00

0.20

****

****

0.00

P1

P2

P3

P4 A0/P5

P0

0.25

Th

****

2.00

P1

1.50

**

P2

P3

****

**

0.00

P4 A0/P5

P0

1.00

DDC

0.20

**

**

0.10

0.10

0.00

0.20

**

0.50

2.50

****

P1

P2

P3

P4 A0/P5

P2

P3

P4 A0/P5

Lac2

0.80

0.60

0.15

***

1.00

0.10

0.50

0.05

P0

100

P1

0.40

0.20

***

0.00

Relative mRNA levels (/rpL32)

0.50

br

**

0.04

P0

Relative mRNA levels (/rpL32)

0.40

Kr-h1

**

0.00

0.00

P2

P3

P4 A0/P5

P0

P1

P2

P3

P4 A0/P5

0.15

CPR27

0.25

0.20

0.15

0.10

0.05

0.00

80

60

Y-y

0.10

A0/P5

40

0.05

20

**

P0

P1

P2

P3

***

P4 A0/P5

**

0.00

P0

P1

P2

P3

P4

A0/P5

P0

P1

Figure 6

Figure 6

dsmalE

Relative mRNA levels (/rpL32)

Relative mRNA levels (/rpL32)

dsE75

0.04

0.03

br

E93

0.04

0.02

**

***

0.02

0.01

0.00

0.00

P2

P3

P2

P4

E8

E75

P3

P4

P2

0.8

Th

P4

P3

P4

DDC

****

0.6

**

0.4

0.2

****

****

P3

P4

2.5

P3

***

P2

Relative mRNA levels (/rpL32)

0.06

Kr-h1

600

Lac2

0.0

P2

P3

P4

CPR27

2.0

400

1.5

1.0

200

0.5

0.0

P2

P3

P4

P2

P3

P4

P2

Figure 7

Figure 7

In normal pupae

Observed phenotypes

Undetectable JH

Adult development of the

cuticle in a proper timing

E75

Th

CPR27

Y-y, Lac2

JH mimic- or dsE75-treated pupae

Exogenous JH mimic

dsE75

Disturbed adult development of

the cuticle

E75

CPR27

Th

Y-y, Lac2

Table S1. Primers used in this study

Gene

Forward primer 5’ to 3’

Reverse primer 5’ to 3’

5'RACE PCR

TcE75A-RR1

CGGTAATTGTCCACTGCTATCCGGTGA

TcE75B-RR1

CATGTCAGGCGGCCACCATTGTTTAT

TcE75C-RR1

ACTTGAACACGATGGTGGCGGTCTG

TcE75D-RR1

TCACATGTGCACCAGCAGCACGATAG

TcE75E-RR1

CGGTGGCACAGGTGGTCTCTTTGAA

qRT-PCR

E75 common

GCTTCATCATGGTCGTCCTCTT

AGGAGGTGATTTCTGAGGAGCA

E75A

CGGAATCCACCACGGATAGTAACA

AAGCCCTTGCATCCTTCGCA

E75B

GGCTCAGTGCTCCGTCGAATTT

GTTTTATCCGAACTCTGGGGCG

E75C

TAACGGGGGTGACGACATGCAG

TCCTCCTGCGTCTTGGGCTT

E75D

GACAGGCTATCGTGCTGCTGGT

GCTTTCTCCCTTTTCGGAACGC

E75E

GACAGCGAGAACCTCCTGGG

AGTGGACGCCGTAGTGGAA

E93

CTCTCGAAAACTCGGTTCTAAACA

TTTGGGTTTGGGTGCTGCCGAATT

br

CCAGCGGTCTCTTTCGTCGTTT

CGTCCTCCACTAACTTCTCGGTGAA

Kr-h1

TGCCATTGAATAACACCACCAA

CCAAGGGGTCTTCGGTGTAATA

HR3

GAACGACACGGGAAGCTTAATG

AAGTACGTGTGTGTGCGTCTGA

Ftz-f1

CTAACATCGTCGCCCGACTC

GAGCCCCAGAGCTTGTTGTC

JHAMT

CATCTCGCCCTATCACCATTCG

CCGCTGAAACCGATTTTGACAA

Tyrosine hydroxylase

CCAGACGCTGAAAAGGCTCT

TGACATACTGCCCCTTGGTG

DDC

TGAGGCTGGCCTTATTCCAT

GCAGCCAGATGTTGTTCGAG

Laccase 2

CGTTTTCAGGTGAACGATACGA

GTTGGTATGGCCCTTTGGCATA

Yellow-y

GGAAACACAACCCAAAACCCGT

TGGGTTTGTGTCTTCAGGTCGT

CPR27

GCCCAAGGGGGAGAAGGTTA

CTCCCATTGGTGGTGGAAGTC

rpL32

CAGGCACCAGTCTGACCGTTATG

GCTTCGTTTTGGCATTGGAGC

dsRNA synthesis (T7 promoter sequence is underlined)

E75 common

TAATACGACTCACTATAGGGAAGTTCGAATTCGC TAATACGACTCACTATAGGGATGAGTTCGGTGTT

GTTCTCTG

CCTCAAGC

HR3

TAATACGACTCACTATAGGGGAGATAATCCCGTG TAATACGACTCACTATAGGGACGCTGTTGTACTG

CAAAGTATGTG

TCCACGTAATC

Table S2 The P-values of the transcript levels of selected genes in the whole body of

Tribolium castaneum pupae after treatment of 40 pmol of pyriproxyfen or solvent. The Pvalues indicating there is not statistically significant differences (P>0.05) are shadowed.

The transcript levels are shown as graphs in Figure 2 and Figure S3.

P1

P2

P3

P4

P5

Kr-h1

<0.0001

0.0002

0.0001

0.0003

0.0004

br

<0.0001

<0.0001

0.0002

0.0086

0.0708

E93

0.0012

0.0024

0.1973

0.5080

0.0030

E75

0.1986

0.0005

<0.0001

0.0003

0.4209

HR3

0.6923

0.0021

0.0001

<0.0001

0.0644

Ftz-f1

0.8876

0.0780

0.6222

0.6959

0.0635

Th

0.8120

0.1340

0.1796

0.0619

0.0611

DDC

0.4892

0.0163

0.0470

0.0477

0.0064

Lac2

0.1615

0.0573

0.0003

0.0003

0.0010

CPR27

0.8639

0.2683

0.0020

<0.0001

0.0112

Y-y

0.1145

0.3757

0.1479

0.0002

0.0002

E75A

0.2638

0.0433

0.1553

0.9408

0.7730

E75B

0.2637

0.0756

0.0063

0.0041

0.3878

E75C

0.0152

0.0952

0.2040

0.4043

0.9252

E75D

0.8496

0.2027

0.0032

0.2284

0.6483

E75E

0.7043

0.4942

0.0002

0.0001

0.0675

Table S3 The P-values of the transcript levels of selected genes in the legs of Tribolium

castaneum pupae after treatment of 40 pmol of pyriproxyfen or solvent. The P-values

indicating there is not statistically significant differences (P>0.05) are shadowed. The

transcript levels are shown as graphs in Figure 3.

P3

P4

P5

Kr-h1

0.0008

<0.0001

0.0074

br

0.0139

0.0051

0.0073

E93

0.0254

0.1876

0.0385

E75

<0.0001

0.0235

0.1966

Th

0.0018

0.0466

0.0053

DDC

0.5783

0.0631

0.0171

Lac2

0.2018

0.1678

0.0045

<0.0001

0.0020

0.0553

CPR27

Table S4 The P-values of the transcript levels of selected genes in the whole body of

Tribolium castaneum pupae after injecting dsRNA of malE and E75. The P-values

indicating there is not statistically significant differences (P>0.05) are shadowed. The

transcript levels are shown as graphs in Figure 5 and Figure S3.

P0

P1

P2

P3

P4

P5/A0

Kr-h1

0.0782

0.7537

0.1743

0.0743

0.4346

0.0099

br

0.4246

0.4821

0.2117

0.1651

0.3393

0.0206

E93

0.0972

0.0866

0.9114

0.0082

0.2709

0.1178

E75

0.3038

0.0478

0.0015

<0.0001

0.0153

0.2425

HR3

0.9330

0.1279

0.0229

<0.0001

0.0028

0.1983

Ftz-f1

0.1135

<0.0001

<0.0001

0.0016

0.3723

0.0920

Th

0.5663

0.0180

0.0037

<0.0001

0.0035

0.1476

DDC

0.9037

0.0004

<0.0001

0.0006

0.1701

0.0243

Lac2

0.1992

0.0059

0.3549

0.3805

0.8006

0.7881

CPR27

0.6511

0.2243

0.2801

0.0368

0.0006

0.0481

Y-y

0.4952

0.0053

0.3929

0.0805

0.0012

0.3574

E75A

0.3625

0.2610

0.0639

0.0290

0.6250

0.3252

E75B

0.0015

<0.0001

0.0201

<0.0001

0.0331

0.5682

E75C

0.0323

0.0010

0.5047

0.1892

0.8929

0.1733

E75D

0.0172

0.0866

0.0007

0.0008

0.9339

0.0022

E75E

0.7539

0.0129

0.2266

0.0003

0.0012

0.6341

Table S5 The P-values of the transcript levels of selected genes in the legs of Tribolium

castaneum pupae after injecting dsRNA of malE and E75. The P-values indicating there

is not statistically significant differences (P>0.05) are shadowed. The transcript levels

are shown as graphs in Figure 6.

P2

P3

P4

Kr-h1

0.1787

0.1671

0.6509

br

0.1555

0.0271

0.1443

E93

0.3204

0.0006

0.0013

E75

0.0495

<0.0001

<0.0001

Th

0.1157

<0.0001

0.0003

DDC

0.0032

0.2917

0.4224

Lac2

0.6396

0.1811

0.8154

CPR27

0.3104

0.0327

0.0351

Figure S1

Isoform-specific

region

241

Common region

88 147

100 bp

222

E75 dsRNA

1991

272

(E75D)

E75 common

280

541

A, B, C, E-specific

A, C, E-specific

Specific region to each isoform

Common region among isoforms

Relative mRNA levels (/rpL32)

Relative mRNA levels (/rpL32)

Figure S2

0.004

Kr-h1

0.040

0.001

0.80

0.200

0.000

0.000

P0 P1 P2 P3 P4 P5 A0

E75

P0 P1 P2 P3 P4 P5 A0

2.000

Relative mRNA levels (/rpL32)

HR3

P0 P1 P2 P3 P4 P5 A0

0.200

0.60

1.500

0.150

0.40

1.000

0.100

0.20

0.500

0.050

0.00

2.500

0.000

0.000

Th

2.000

P0 P1 P2 P3 P4 P5 A0

0.400

0 P1

1 P2

2 P3

3 P4

4 P5

5 A0

P0

Lac2

1.000

0.500

0.100

0.500

0.000

0.000

0.000

P0 P1 P2 P3 P4 P5 A0

CPR27

P0 P1 P2 P3 P4 P5 A0

0.15

200

0.10

100

0.05

1.500

Ftz-f1

0.200

1.000

DDC

0.300

1.500

300

E93

0.020

P0 P1 P2 P3 P4 P5 A0

Relative mRNA levels (/rpL32)

0.600

0.400

0.060

0.002

br

0.080

0.003

0.000

0.100

Y-y

0.00

0 P1

1 P2

2 P33 P44 P55 A0

P0

P0 P1 P2 P3 P4 P5 A0

P0 P1 P2 P3 P4 P5 A0

Figure S2, continued

0.15

E75A

0.40

E75B

0.30

0.10

0.15

E75C

0.10

0.20

0.05

0.00

0.20

0.05

0.10

P0 P1 P2 P3 P4 P5 A0

E75D

0.15

0.00

0.15

0P0 P1

1 P2

2 P3

3 P44 P55 A00

E75E

0.10

0.10

0.05

0.05

0.00

0.00

P0 P1 P2 P3 P4 P5 A0

0 P1

1 P2

2 P33 P44 P55 A00

P0

0.00

P0 P1 P2 P3 P4 P5 A0

Relative mRNA levels (/rpL32)

Relative mRNA levels (/rpL32)

Figure S2

0.004

Kr-h1

0.040

0.001

0.80

0.200

0.000

0.000

P0 P1 P2 P3 P4 P5 A0

E75

P0 P1 P2 P3 P4 P5 A0

2.000

Relative mRNA levels (/rpL32)

HR3

P0 P1 P2 P3 P4 P5 A0

0.200

0.60

1.500

0.150

0.40

1.000

0.100

0.20

0.500

0.050

0.00

2.500

0.000

0.000

Th

2.000

P0 P ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る