リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Orthogonal electric and ionic conductivities in the thin film of a thiophene–thiophene block copolymer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Orthogonal electric and ionic conductivities in the thin film of a thiophene–thiophene block copolymer

Yamamoto, Sonoka Yamashita, Ryutaro Kubota, Chihiro Okano, Kentaro Kitamura, Masatoshi Funahashi, Masahiro Ye, Syu-Cheng Pan, Yung-Tin Horie, Masaki Shintani, Takuji Murata, Hironori Matsuyama, Hideto Mori, Atsunori 神戸大学

2023.02.21

概要

A thiophene–thiophene block copolymer composed of hydrophilic and hydrophobic side chain functionalities was designed and synthesized. The deprotonative metalation nickel-catalyzed polymerization protocol successfully afforded the block copolymer, in which the side chains are derived from alkyl and benzenesulfonic acid ester groups. The benzene sulfonate moiety of the block copolymer in the film state was shown to be transformed into hydrophilic sulfonic acid upon thermal treatment at ca. 200 °C without the addition of an external additive. Thus, the formed block copolymer thin film exhibited cylindrical microphase separation and the hydrophilic domain was revealed to penetrate the film perpendicular to the substrate. The measurement of electric conductivity suggested that the block copolymer thin film was conductive when placed parallel to the substrate, while the film was insulative when placed perpendicular to the substrate. Electrochemical analyses revealed that lithium ions transfer through the cylindrical domain composed of a benzene sulfonic acid side chain, which is perpendicular to the substrate. These results represent dual and orthogonal conductivities of electrons and ions in the block copolymer thin film.

この論文で使われている画像

参考文献

H. Sirringhaus, N. Tessler and R. H. Friend, Integrated

Optoelectronic Devices Based on Conjugated Polymers,

Science, 1998, 280, 1741–1744.

A. C. Grimsdale, K. Leok Chan, R. E. Martin, P. G. Jokisz and

A. B. Holmes, Synthesis of Light-Emitting Conjugated

Polymers for Applications in Electroluminescent Devices,

Chem. Rev., 2009, 109, 897–1091.

P. M. Beaujuge and J. M. J. Fréchet, Molecular Design and

Ordering Effects in π-Functional Materials for Transistor

and Solar Cell Applications, J. Am. Chem. Soc., 2011, 133,

20009–20029.

I. Osaka and R. D. McCullough, Advances in Molecular

Design and Synthesis of Regioregular Polythiophenes, Acc.

Chem. Res., 2008, 41, 1202–1214.

T. Yokozawa and Y. Ohta, Transformation of Step-Growth

Polymerization into Living Chain-Growth Polymerization,

Chem. Rev., 2016, 116, 1950–1968.

T. Yokozawa and A. Yokoyama, Chain-Growth

Condensation Polymerization for the Synthesis of WellDefined Condensation Polymers and π-Conjugated

Polymers, Chem. Rev., 2009, 109, 5595–5619.

16

17

18

19

S. Tamba, K. Shono, A. Sugie and A. Mori, C–H

Functionalization Polycondensation of Chlorothiophenes in

the Presence of Nickel Catalyst with Stoichiometric or

Catalytically Generated Magnesium Amide, J. Am. Chem.

Soc., 2011, 133, 9700–9703.

S. Tamba, R. Fujii, A. Mori, K. Hara and N. Koumura,

Synthesis and Properties of Seleno-analog MK-organic Dye

for Photovoltaic Cells Prepared by C-H Functionalization

Reactions of Selenophene Derivatives, Chem. Lett., 2011,

40, 922–924.

Y. Shibuya and A. Mori, Dehalogenative or Deprotonative?

The Preparation Pathway to the Organometallic Monomer

for Transition‐Metal‐Catalyzed Catalyst‐Transfer‐Type

Polymerization of Thiophene Derivatives, Chem. Eur. J.,

2020, 26, 6976–6987.

A. Mori, Transition Metal-catalyzed Bond-forming

Reactions at the C-H Bond of Heteroaromatic Compounds,

J. Synth. Org. Chem. Jpn., 2011, 69, 1202–1211.

A. Mori, Structure and functionality-based molecular

design of azoles and thiophenes, Bull. Chem. Soc. Jpn.,

2020, 93, 1200–1212.

M. Chayer, K. Faïd and M. Leclerc, Highly Conducting

Water-Soluble Polythiophene Derivatives, Chem. Mater.,

1997, 9, 2902–2905.

H. Goto and E. Yashima, Electron-Induced Switching of the

Supramolecular Chirality of Optically Active Polythiophene

Aggregates, J. Am. Chem. Soc., 2002, 124, 7943–7949.

X. M. Hong, J. C. Tyson and D. M. Collard, Controlling the

Macromolecular Architecture of Poly(3-alkylthiophene)s by

Alternating Alkyl and Fluoroalkyl Substituents,

Macromolecules, 2000, 33, 3502–3504.

K. Fujita, Y. Sumino, K. Ide, S. Tamba, K. Shono, J. Shen, T.

Nishino, A. Mori and T. Yasuda, Synthesis of Poly(3substituted thiophene)s of Remarkably High Solubility in

Hydrocarbon via Nickel-Catalyzed Deprotonative CrossCoupling Polycondensation, Macromolecules, 2016, 49,

1259–1269.

A. Mori, K. Fujita, C. Kubota, T. Suzuki, K. Okano, T.

Matsumoto, T. Nishino and M. Horie, Formal preparation

of regioregular and alternating thiophene–thiophene

copolymers bearing different substituents, Beilstein J. Org.

Chem., 2020, 16, 317–324.

S. Berson, S. Cecioni, M. Billon, Y. Kervella, R. de Bettignies,

S. Bailly and S. Guillerez, Effect of carbonitrile and hexyloxy

substituents on alternated copolymer of polythiophenePerformances in photovoltaic cells, Sol. Energy Mater. Sol.

Cells, 2010, 94, 699–708.

A. Mori, C. Kubota, K. Fujita, M. Hayashi, T. Ogura, T. Suzuki,

K. Okano, M. Funahashi and M. Horie, Thermally Induced

Self-Doping of π-Conjugated Polymers Bearing a Pendant

Neopentyl Sulfonate Group, Macromolecules, 2020, 53,

1171–1179.

V. Hirschberg, L. Faust, D. Rodrigue and M. Wilhelm, Effect

of Topology and Molecular Properties on the Rheology and

Fatigue Behavior of Solid Polystyrene/Polyisoprene Di- And

Triblock Copolymers, Macromolecules, 2020, 53, 5572–

5587.

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 9

Please do not adjust margins

Please do not adjust margins

ARTICLE

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Journal Name

X. Yu, K. Xiao, J. Chen, N. V. Lavrik, K. Hong, B. G. Sumpter

and D. B. Geohegan, High-performance field-effect

transistors based on polystyrene-b-poly(3- hexylthiophene)

diblock copolymers, ACS Nano, 2011, 5, 3559–3567.

Y. Tian, K. Watanabe, X. Kong, J. Abe and T. Iyoda,

Synthesis, Nanostructures, and Functionality of

Amphiphilic Liquid Crystalline Block Copolymers with

Azobenzene Moieties, Macromolecules, 2002, 35, 3739–

3747.

M. Komura and T. Iyoda, AFM Cross-Sectional Imaging of

Perpendicularly Oriented Nanocylinder Structures of

Microphase-Separated Block Copolymer Films by Crystallike Cleavage, Macromolecules, 2007, 40, 4106–4108.

A. Mori, J. Shikuma, M. Kinoshita, T. Ikeda, M. Misaki, Y.

Ueda, M. Komura, S. Asaoka and T. Iyoda, Controlled

Homeotropic and Homogeneous Orientations for

Nanoscale Phase-separated Domain of Light-emitting

Amphiphilic Block Copolymer Bearing a 2,5-Diarylthiazole

Moiety, Chem. Lett., 2008, 37, 272–273.

Y. Takeoka, Y. Iguchi, M. Rikukawa and K. Sanui, Selfassembled multilayer films based on functionalized

poly(thiophene)s, Synth. Met., 2005, 154, 109–112.

K. Umezawa, T. Oshima, M. Yoshizawa-Fujita, Y. Takeoka

and M. Rikukawa, Synthesis of Hydrophilic–Hydrophobic

Block Copolymer Ionomers Based on Polyphenylenes, ACS

Macro Lett., 2012, 1, 969–972.

H.-R. Tseng, H. Phan, C. Luo, M. Wang, L. A. Perez, S. N.

Patel, L. Ying, E. J. Kramer, T.-Q. Nguyen, G. C. Bazan and A.

J. Heeger, High-Mobility Field-Effect Transistors Fabricated

with Macroscopic Aligned Semiconducting Polymers, Adv.

Mater., 2014, 26, 2993–2998.

Y. Nagao and J. Matsui, Anisotropic Proton Conductivity of

Poly(aspartic acid) Thin Films, Mater. Today Proc., 2019, 17,

953–958.

X. M. Hong and D. M. Collard, Liquid Crystalline

Regioregular Semifluoroalkyl-Substituted Polythiophenes,

Macromolecules, 2000, 33, 6916–6917.

A. Mori, C. Kubota, D. Morita, K. Fujita, S. Yamamoto, T.

Suzuki, K. Okano, M. Funahashi and M. Horie, ThermallyInduced Doping of the Regioregular Polythiophene Bearing

Alkylene Spacered Benzene sulfonate Group at the Side

Chain, Heterocycles, 2021, 103, 249–257.

Y.-H. Lee, Y.-L. Yang, W.-C. Yen, W.-F. Su and C.-A. Dai,

Solution self-assembly and phase transformations of form

II crystals in nanoconfined poly(3-hexyl thiophene) based

rod-coil block copolymers, Nanoscale, 2014, 6, 2194.

C.-A. Dai, W.-C. Yen, Y.-H. Lee, C.-C. Ho and W.-F. Su, Facile

Synthesis of Well-Defined Block Copolymers Containing

Regioregular Poly(3-hexyl thiophene) via Anionic

Macroinitiation Method and Their Self-Assembly Behavior,

J. Am. Chem. Soc., 2007, 129, 11036–11038.

Y.-H. Lee, W.-C. Yen, W.-F. Su and C.-A. Dai, Self-assembly

and phase transformations of π-conjugated block

copolymers that bend and twist: from rigid-rod nanowires

to highly curvaceous gyroids, Soft Matter, 2011, 7, 10429.

J. Bartuš, Electrically Conducting Thiophene Polymers, J.

Macromol. Sci. Part A - Chem., 1991, 28, 917–924.

34

35

36

37

38

39

T. Ghosh, S. Nagasawa, N. Raveendran, V. Darshan, A. Saeki

and V. C. Nair, Preferential Face‐on and Edge‐on

Orientation of Thiophene Oligomers by Rational Molecular

Design, Chem. – An Asian J., 2019, 14, 963–967.

S. Y. Son, T. Park and W. You, Understanding of Face-On

Crystallites Transitioning to Edge-On Crystallites in

Thiophene-Based Conjugated Polymers, Chem. Mater.,

2021, 33, 4541–4550.

S. N. Patel, A. E. Javier and N. P. Balsara, Electrochemically

Oxidized Electronic and Ionic Conducting Nanostructured

Block Copolymers for Lithium Battery Electrodes, ACS Nano,

2013, 7, 6056–6068.

A. H. Stoll and P. Knochel, Preparation of Fully Substituted

Anilines for the Synthesis of Functionalized Indoles, Org.

Lett., 2008, 10, 113–116.

W. A. Herrmann and C. Köcher, N-Heterocyclic Carbenes,

Angew. Chem., Int. Ed. Engl., 1997, 36, 2162–2187.

R. Inoue, M. Yamaguchi, Y. Murakami, K. Okano and A.

Mori, Revisiting of Benzophenone Ketyl Still: Use of a

Sodium Dispersion for the Preparation of Anhydrous

Solvents, ACS Omega, 2018, 3, 12703–12706.

10 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る