リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Detection of Amine Vapors using Luminescent Xerogels from Supramolecular Metal-Containing」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Detection of Amine Vapors using Luminescent Xerogels from Supramolecular Metal-Containing

Sasaki, Junpei Suzuki, Masahiro Hanabusa, Kenji 信州大学 DOI:10.1246/bcsj.20170409

2020.03.12

概要

Supramolecular fluorescent gelators containing a tris(beta-diketonato) complex are synthesized by using gelation-driving chelates, and their gelation abilities are studied with 15 solvents. Thin-layer films are prepared on quartz plates from the solutions and they are studied as chemosensors for amines. Fluorescence-quenching of the thin-layer films upon exposure to saturated primary and secondary amine vapors is monitored to evaluate the abilities of the chemosensors to detect amines. The morphologies of the thin-layer films are observed by transmission electron microscopy (TEM) and discussed in relation to their fluorescence-quenching. The fluorescence-quenching efficiencies upon exposure to saturated primary and secondary amines depend on the basicity and bulkiness of the amines rather than the vapor pressure. The fluorescence-quenching is caused by decomposition of a complex through nucleophilic addition of primary or secondary amines to its carbonyl group. The detection of tertiary amines is performed by monitoring the fluorescence emission from the thin-layer films, which are composed of a ligand and EuCl3. The emergence of fluorescence originates from the formation of fluorescent Eu3+-containing gelator, in which dehydrochloric acid by tertiary amines is a trigger for the complexation.

この論文で使われている画像

参考文献

1.

(a) T. Gao, E. S. Tillman, N. S. Lewis, Chem. Mater. 2005,

17, 2904–2911; (b) J. M. Landete, B. Rivas, A. Marcobal,

R. Muñoz, Int. J. Food Microbiol. 2007, 117, 258–269; (c)

V. P. Aneja, P. A. Roelle, G. C. Murray, J. Scutherland, J.

W. Erisman, D. Faler, W. A. H. Asman, N. Patni, Atmos.

Environ. 2001, 35, 1903–1911; (d) P. Boeker, G. Horner, S.

Rosler, Sens. Actuators B 2000, 70, 37–42; (e) T.

Hernandezjover, M. Izquierdopulido, M. T. Veciananogues,

M. C. Vidalcarou, J. Agric. Food Chem. 1996, 44, 2710–

2715; (f) M. Nakamura, T. Sanji, M. Tanaka, Chem. Eur. J.

2011, 17, 5344–5349; (g) B. Lee, R. Scopelliti, K. Severin,

Chem. Commun. 2011, 47, 9639–9641; (h) M. Loughran,

D. Diamond, Food Chem. 2000, 69, 97–103; (i) E. Trevion,

D. Beil, H. Steinhart, Food Chem. 1997, 60, 521–526.

2.

(a) J. Kumpf, S. T. Schwaebel, U. H. F. Bunz, J. Org.

Chem. 2015, 80, 5159−5166; (b) J. Kumpf, J. Freudenberg,

S. T. Schwaebel, U. H. F. Bunz, Macromolecules 2014, 47,

2569−2573; (c) A. Mallick, B. Garai, M. A. Addicoat, P.

S. Petkov, T. Heine, R. Banerjee, Chem. Sci. 2015, 6,

1420–1425; (d) C.-F. Chow, M. H. W. Lam, W. Y. Wong,

Anal. Chem. 2013, 85, 8246−8253; (e) P. Heier, N. D.

Boscher, P. Choquet, K. Heinze, Inorg. Chem. 2014, 53,

11086−11095; (f) X. Pang, X. Yu, H. Lan, X. Ge, Y. Li, X.

Zhen, T. Yi, ACS Appl. Mater. Interfaces 2015, 7,

13569−13577; (g) H. A. Azab, S. A. El-Korashy, Z. M.

Anwar, G. M. Khairy, A. Duerkop, J. Photochem.

Photobiol. A: Chem. 2012, 243, 41–46; (h) G. Giancane,

V. Borovkov, Y. Inoue, L. Valli, J. Colloid Interface Sci.

2012, 385, 282–284; (i) X. J. Huang, T. Y. You, T. Li, X. R.

Yang, E. K. Wang, Electroanalysis 1999, 11, 969–972; (j)

Y. M. Chung, B. Raman, K. H. Ahn, Tetrahedron 2006, 62,

11645–11651; (k) X. Yang, G. Peter, C. Hauser,

Electrophoresis 2006, 27, 468–473; (l) W. X. Zhang, Z. X.

Chen, Z. H. Yang, Phys. Chem. Chem. Phys. 2009, 11,

6263–6268; (m) L. Feng, C. J. Musto, J. W. Kemling, S. H.

Lim, K. S. Suslick, Chem. Commun. 2010, 46, 2037–2039;

(n) S. Kӧrsten, G. J. Mohr, Chem. Eur. J. 2011, 17, 969–

975.

3.

C. Wang, X. W. He, L. X. Chen, Talanta 2002, 57, 1181–

1188.

4.

C. J. Liu, J. T. Lin, S. H. Wang, J. C. Jiang, L. G. Lin,

Sensors and Actuators B, 2005, 108, 521–527.

5.

S. A. Brittle, T. H. Richardson, J. Hutchinson, C. A. Hunter,

Colloids Surf. A 2008, 321, 29–33.

6.

X. Zhang, X. Liu, R. Lu, H. Zhang, P. Gong, J. Mater.

Chem. 2012, 22, 1167–1172.

7.

Z. Zhou, Q. Wang, J. Lin, Y. Chen, C. Yang, Photochem.

Photobiol. 2012, 88, 840–843.

8.

Y. Fu, Q. He, D. Zhu, Y. Wang, Y. Gao, H. Cao, J. Cheng,

Chem. Commun. 2013, 49, 11266–11268.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

C. F. Chow, M. H. W. Lam, W. Y. Wong, Anal. Chem. 2013,

85, 8246–8253.

P. Xue, Q. Xu, P. Gong, C. Qian., A. Ren, Y. Zhang, R. Lu,

Chem. Commun. 2013, 49, 5838–5840.

T. Han, J. W. Y. Lam, N. Zhao, M. Gao, Z. Yang, E. Zhao,

Y. Dong, B. Z. Tang, Chem. Commun. 2013, 49, 4848–

4850.

S. Rochat, T. M. Swager, Angew. Chem. Int. Ed. 2014, 53,

9792–9796.

J. Kumpf, J. Freudenberg, K. Fletcher, A. Dreuw, U. H. F.

Bunz, J. Org. Chem. 2014, 79, 6634–6645.

J. Yao, Y. Fu, W. Fan, Q. He, D. Zhu, H. Cao, J. Cheng,

RSC Adv. 2015, 5, 25125–25131.

K. Hanabusa, M. Suzuki, Bull. Chem. Soc. Jpn. 2016, 89,

174–182.

K. Hanabusa, K. Harano, M. Fujisaki, Y. Nomura, M.

Suzuki, Macromolecular Sympo. 2016, 364, 7–8.

K. Hanabusa, S. Takata, M. Fujisaki, Y. Nomura, M.

Suzuki, Bull. Chem. Soc. Jpn. 2016, 89, 1391–1401.

(a), ed. F. Fages, Low Molecular Mass Gelators; Design,

Self-Assembly, Function Springer, Berlin Heidelberg New

York, 2005; (b) P. Dastidar, Chem. Soc. Rev. 2008, 37,

2699–2715; (c) S. Banerjee, R. K. Das, U. Maitra, J. Mater.

Chem. 2009, 19, 6649–6687; (d) M. Suzuki, K. Hanabusa,

Chem. Soc. Rev. 2009, 38, 967–975; (e) M. Suzuki, K.

Hanabusa, Chem. Soc. Rev. 2010, 39, 455–463; (f) J. L. Li, X.

Y. Liu, Adv. Funct. Mater. 2010, 20, 3196–3216; (g) G.

John, B. V. Shankar, S. R. Jadhav, P. K. Vemula, Langmuir

2010, 26, 17843–17851; (h) H. Svobodová, V. Noponen, E.

Kolehmainen, E. Sievänen, RSC Adv. 2012, 2, 4985–5007;

(i) S. S. Babu, S. Prasanthkumar, A. Ajayaghosh, Angew.

Chem., Int. Ed. 2012, 51, 1766–1776; (j) A. Y. Y. Tam, V.

W. W. Yam, Chem. Soc. Rev. 2013, 42, 1540–1567; (k) J.

Raeburn, A. Z. Cardoso, D. J. Adams, Chem. Soc. Rev.

2013, 42, 5143–5156; (l) G. Yu, X. Yan, C. Han, F. Huang,

Chem. Soc. Rev. 2013, 42, 6697–6722; (m) M. D. SegarraMaset, V. J. Nebot, J. F. Miravet, B. Escuder, Chem. Soc.

Rev. 2013, 42, 7086–7098; (n) S. S. Babu, V. K. Praveen,

A. Ajayaghosh, Chem. Rev. 2014, 114, 1973–2129; (o) D.

K. Kumar, J. W. Steed, Chem. Soc. Rev. 2014, 43, 2080–

2088; (p) V. K. Praveen, C. Ranjith, N. Armaroli, Angew.

Chem., Int. Ed. 2014, 53, 365–368; (q) Y. Lan, M. G.

Corradinia, R. G. Weiss, S. R. Raghavanc, M. A. Rogers,

Chem. Soc. Rev. 2015, 44, 6035–6058; (r) K. Hanabusa,

Polym. J. 2014, 46, 776–782.

Graphical Abstract

<Title>

Detection of Amine Vapors using Luminescent Xerogels from Supramolecular Metal-Containing Gelator

<Authors' names>

Junpei Sasaki, Masahiro Suzuki, Kenji Hanabusa

<Summary>

Fluorescent gelators containing a tris(-diketonato) complex are synthesized by using gelation-driving chelates, and their gelation

abilities are studied. Thin-layer films are prepared on quartz plates from the solutions and studied as chemosensors for amines. The

fluorescence-quenching efficiencies upon exposure to saturated primary and secondary amines depend on the basicity and bulkiness of

the amines rather than the vapor pressure.

<Diagram>

Vapor of amines

0.5 µm

Fl uorescence Quenching (%)

100

Supramolecular assembly of

Eu 3+-containing gelator

80

60

40

Hexylamine

Ammonia

Aniline

Naphthylamine

20

20

40

Ti me (min)

60

Fluorescence quenching of xerogel film of

Eu3+-containing gelator by amines

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る