リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant

Ito, Jumpei Suzuki, Rigel Uriu, Keiya Itakura, Yukari Zahradnik, Jiri Kimura, Kanako Terakado Deguchi, Sayaka Wang, Lei Lytras, Spyros Tamura, Tomokazu Kida, Izumi Nasser, Hesham Shofa, Maya Begum, Mst Monira Tsuda, Masumi Oda, Yoshitaka Suzuki, Tateki Sasaki, Jiei Sasaki-Tabata, Kaori Fujita, Shigeru Yoshimatsu, Kumiko Ito, Hayato Nao, Naganori Asakura, Hiroyuki Nagashima, Mami Sadamasu, Kenji Yoshimura, Kazuhisa Yamamoto, Yuki Nagamoto, Tetsuharu Kuramochi, Jin Schreiber, Gideon The Genotype to Phenotype Japan (G2P-Japan) Consortium Saito, Akatsuki Matsuno, Keita Takayama, Kazuo Hashiguchi, Takao Tanaka, Shinya Fukuhara, Takasuke Ikeda, Terumasa Sato, Kei 京都大学 DOI:10.1038/s41467-023-38188-z

2023.05.11

概要

In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022.

この論文で使われている画像

関連論文

参考文献

1.

WHO. Tracking SARS-CoV-2 variants (March 30, 2023) https://

www.who.int/en/activities/tracking-SARS-CoV-2-variants (2022).

16

Article

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Saito, A. et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant. Cell Host Microbe 30, 1540–1555.e1515 (2022).

Wang, Q. et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4, & BA.5. Nature https://doi.org/10.1038/

s41586-022-05053-w (2022).

Tuekprakhon, A. et al. Antibody escape of SARS-CoV-2 Omicron

BA.4 and BA.5 from vaccine and BA.1 serum. Cell 185, 2422–2433

e2413 (2022).

Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by

Omicron infection. Nature https://doi.org/10.1038/s41586-02204980-y (2022).

Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces

convergent Omicron RBD evolution. BioRxiv https://doi.org/10.

1101/2022.1109.1115.507787 (2022).

Makowski, E. K., Schardt, J. S., Smith, M. D. & Tessier, P. M. Mutational analysis of SARS-CoV-2 variants of concern reveals key tradeoffs between receptor affinity and antibody escape. PLoS

Comput. Biol. 18, e1010160 (2022).

Aggarwal, A. et al. Mechanistic insights into the effects of key

mutations on SARS-CoV-2 RBD-ACE2 binding. Phys. Chem. Chem.

Phys. 23, 26451–26458 (2021).

Deshpande, A., Harris, B. D., Martinez-Sobrido, L., Kobie, J. J. &

Walter, M. R. Epitope classification and RBD binding properties of

neutralizing antibodies against SARS-CoV-2 variants of concern.

Front. Immunol. 12, 691715 (2021).

Cao, Y. et al. Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75. Cell Host Microbe 30, 1527–1539

e1525 (2022).

Qu, P. et al. Evasion of neutralizing antibody responses by the SARSCoV-2 BA.2.75 variant. Cell Host Microbe 30, 1518–1526

e1514 (2022).

Wang, Q. et al. Antigenic characterization of the SARS-CoV-2

Omicron subvariant BA.2.75. Cell Host Microbe 30, 1512–1517

e1514 (2022).

Zhou, T. et al. Structural basis for potent antibody neutralization of

SARS-CoV-2 variants including B.1.1.529. Science 376,

eabn8897 (2022).

Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2

neutralizing antibodies. Nature 602, 657–663 (2022).

Focosi, D., Quiroga, R., McConnell, S. A., Johnson, M. C. & Casadevall, A. Convergent evolution in SARS-CoV-2 Spike creates a

variant soup that causes new COVID-19 waves. BioRxiv https://doi.

org/10.1101/2022.1112.1105.518843 (2022).

Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces

convergent Omicron RBD evolution. Nature 614, 521–529 (2023).

Kimura, I. et al. Virological characteristics of the novel SARS-CoV-2

Omicron variants including BA.4 and BA.5. Cell 185,

3992–4007.e3916 (2022).

Tamura, T. et al. Virological characteristics of the SARS-CoV-2 XBB

variant derived from recombination of two Omicron subvariants.

BioRxiv https://doi.org/10.1101/2022.1112.1127.521986 (2022).

GitHub. BA.2.3 Sublineage with 10 highly convergent S1 mutations

(5 seqs, 3xSingapore, 1xAustralia, 1xUSA) (September 1, 2022).

https://github.com/cov-lineages/pango-designation/issues/

1013 (2022).

GitHub. BE.1.1.1 sublineage with Orf1b:Y264H and S:N460K

(69 sequences) emerged in Nigeria (14 seqs) (August 26, 2022).

https://github.com/cov-lineages/pango-designation/issues/

993 (2022).

Arora, P. et al. Omicron sublineage BQ.1.1 resistance to monoclonal

antibodies. Lancet Infect. Dis. https://doi.org/10.1016/S14733099(22)00733-2 (2022).

Motozono, C. et al. SARS-CoV-2 spike L452R variant evades cellular

immunity and increases infectivity. Cell Host Microbe 29,

1124–1136 (2021).

Nature Communications | (2023)14:2671

https://doi.org/10.1038/s41467-023-38188-z

23. Dejnirattisai, W. et al. SARS-CoV-2 Omicron-B.1.1.529 leads to

widespread escape from neutralizing antibody responses. Cell 185,

467–484 e415 (2022).

24. Zahradnik, J. et al. SARS-CoV-2 variant prediction and antiviral drug

design are enabled by RBD in vitro evolution. Nat. Microbiol. 6,

1188–1198 (2021).

25. Kimura, I. et al. The SARS-CoV-2 Lambda variant exhibits enhanced

infectivity and immune resistance. Cell Rep. 38, 110218 (2022).

26. Yamasoba, D. et al. Virological characteristics of the SARS-CoV-2

Omicron BA.2 spike. Cell 185, 2103–2115.e2119 (2022).

27. Nutalai, R. et al. Potent cross-reactive antibodies following Omicron

breakthrough in vaccinees. Cell 185, 2116–2131.e2118 (2022).

28. Towler, P. et al. ACE2 X-ray structures reveal a large hinge-bending

motion important for inhibitor binding and catalysis. J. Biol. Chem.

279, 17996–18007 (2004).

29. Ye, F. et al. S19W, T27W, and N330Y mutations in ACE2 enhance

SARS-CoV-2 S-RBD binding toward both wild-type and antibodyresistant viruses and its molecular basis. Signal Transduct. Target

Ther. 6, 343 (2021).

30. Huo, J. et al. A delicate balance between antibody evasion and

ACE2 affinity for Omicron BA.2.75. Cell Rep 42, 111903 (2023).

31. Suzuki, R. et al. Attenuated fusogenicity and pathogenicity of SARSCoV-2 Omicron variant. Nature 603, 700–705 (2022).

32. Saito, A. et al. Enhanced fusogenicity and pathogenicity of SARSCoV-2 Delta P681R mutation. Nature 602, 300–306 (2022).

33. Nasser, H. et al. Monitoring fusion kinetics of viral and target cell

membranes in living cells using a SARS-CoV-2 spike-proteinmediated membrane fusion assay. STAR Protoc. 3, 101773 (2022).

34. Hashimoto, R. et al. SARS-CoV-2 disrupts the respiratory vascular

barrier by suppressing Claudin-5 expression. Sci Adv 8,

eabo6783 (2022).

35. Tamura, T. et al. Comparative pathogenicity of SARS-CoV-2 Omicron subvariants including BA.1, BA.2, and BA.5. BioRxiv https://doi.

org/10.1101/2022.1108.1105.502758 (2022).

36. Martin, D. P. et al. The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell 184, 5189–5200

e5187 (2021).

37. Martin, D. P. et al. Selection analysis identifies clusters of unusual

mutational changes in Omicron lineage BA.1 that likely impact spike

function. Mol. Biol. Evol. 39, https://doi.org/10.1093/molbev/

msac061 (2022).

38. Uraki, R. et al. Characterization and antiviral susceptibility of SARSCoV-2 Omicron/BA.2. Nature https://doi.org/10.1038/s41586-02204856-1 (2022).

39. Chen, D. Y. et al. Spike and nsp6 are key determinants of SARS-CoV2 Omicron BA.1 attenuation. Nature https://doi.org/10.1038/

s41586-023-05697-2 (2023).

40. Obermeyer, F. et al. Analysis of 6.4 million SARS-CoV-2 genomes

identifies mutations associated with fitness. Science 376,

1327–1332 (2022).

41. Ozono, S. et al. SARS-CoV-2 D614G spike mutation increases entry

efficiency with enhanced ACE2-binding affinity. Nat. Commun. 12,

848 (2021).

42. Ferreira, I. et al. SARS-CoV-2 B.1.617 mutations L452R and E484Q

are not synergistic for antibody evasion. J. Infect. Dis. 224,

989–994 (2021).

43. Reeves, P. J., Callewaert, N., Contreras, R. & Khorana, H. G. Structure and function in rhodopsin: high-level expression of rhodopsin

with restricted and homogeneous N-glycosylation by a

tetracycline-inducible N-acetylglucosaminyltransferase I-negative

HEK293S stable mammalian cell line. Proc. Natl Acad. Sci. USA 99,

13419–13424 (2002).

44. Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by

TMPRSS2-expressing cells. Proc. Natl Acad. Sci USA 117,

7001–7003 (2020).

17

Article

45. Fujita, S. et al. Structural Insight into the Resistance of the SARSCoV-2 Omicron BA.4 and BA.5 Variants to Cilgavimab. Viruses 14,

2677 (2022).

46. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one

FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

47. Li, H. & Durbin, R. Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

48. Li, H. et al. The sequence alignment/map format and SAMtools.

Bioinformatics 25, 2078–2079 (2009).

49. Cingolani, P. et al. A program for annotating and predicting the

effects of single nucleotide polymorphisms, SnpEff: SNPs in the

genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly

(Austin) 6, 80–92 (2012).

50. Khare, S. et al. GISAID’s role in pandemic response. China CDC Wkly

3, 1049–1051 (2021).

51. Li, H. Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics 34, 3094–3100 (2018).

52. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a

tool for automated alignment trimming in large-scale phylogenetic

analyses. Bioinformatics 25, 1972–1973 (2009).

53. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and

post-analysis of large phylogenies. Bioinformatics 30,

1312–1313 (2014).

54. Lanfear, R. A global phylogeny of SARS-CoV-2 sequences from

GISAID. Zenodo https://zenodo.org/record/4289383#.

Y6ER8C33ITs (2020).

55. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment

software version 7: improvements in performance and usability.

Mol. Biol. Evol. 30, 772–780 (2013).

56. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE:

a fast and effective stochastic algorithm for estimating maximumlikelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

57. Sagulenko, P., Puller, V. & Neher, R. A. TreeTime: Maximumlikelihood phylodynamic analysis. Virus Evol. 4, vex042 (2018).

58. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis,

and visualization of phylogenomic data. Mol. Biol. Evol. 33,

1635–1638 (2016).

59. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for highexpression transfectants with a novel eukaryotic vector. Gene 108,

193–199 (1991).

60. Uriu, K. et al. Neutralization of the SARS-CoV-2 Mu variant by convalescent and vaccine serum. N. Engl. J. Med. 385,

2397–2399 (2021).

61. Uriu, K. et al. Characterization of the immune resistance of SARSCoV-2 Mu variant and the robust immunity induced by Mu infection.

J. Infect. Dis., https://doi.org/10.1093/infdis/jiac053 (2022).

62. Yamasoba, D. et al. Neutralisation sensitivity of SARS-CoV-2 omicron subvariants to therapeutic monoclonal antibodies. Lancet

Infect. Dis. 22, 942–943 (2022).

63. Kimura, I. et al. The SARS-CoV-2 spike S375F mutation characterizes

the Omicron BA.1 variant. iScience 25, 105720 (2022).

64. Uriu, K. et al. Enhanced transmissibility, infectivity, and immune

resistance of the SARS-CoV-2 omicron XBB.1.5 variant. Lancet

Infect. Dis. 23, 280–281 (2023).

65. Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron

impacts tropism and fusogenicity. Nature 603, 706–714 (2022).

66. Reed, L. J. & Muench, H. A simple method of estimating fifty percent

endpoints. Am. J. Hygiene 27, 493–497 (1938).

67. Zahradnik, J. et al. A protein-engineered, enhanced yeast display

platform for rapid evolution of challenging targets. ACS Synth. Biol.

10, 3445–3460 (2021).

68. Ozono, S., Zhang, Y., Tobiume, M., Kishigami, S. & Tokunaga, K.

Super-rapid quantitation of the production of HIV-1 harboring a

luminescent peptide tag. J. Biol. Chem. 295, 13023–13030

(2020).

Nature Communications | (2023)14:2671

https://doi.org/10.1038/s41467-023-38188-z

69. Kubota, M. et al. Trisaccharide containing alpha2,3-linked sialic acid

is a receptor for mumps virus. Proc. Natl Acad. Sci. USA 113,

11579–11584 (2016).

70. Hirata, K. et al. ZOO: an automatic data-collection system for highthroughput structure analysis in protein microcrystallography. Acta

Crystallogr. D: Struct. Biol. 75, 138–150 (2019).

71. Yamashita, K., Hirata, K. & Yamamoto, M. KAMO: towards automated data processing for microcrystals. Acta Crystallogr. D: Struct.

Biol. 74, 441–449 (2018).

72. Kabsch, W. Xds. Acta Crystallogr. D: Biol. Crystallogr. 66,

125–132 (2010).

73. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

74. Bond, P. S. & Cowtan, K. D. ModelCraft: an advanced automated

model-building pipeline using Buccaneer. Acta Crystallogr. D:

Struct. Biol. 78, 1090–1098 (2022).

75. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular

graphics. Acta Crystallogr. D: Biol. Crystallogr. 60,

2126–2132 (2004).

76. Adams, P. D. et al. PHENIX: a comprehensive Python-based system

for macromolecular structure solution. Acta Crystallogr. D: Biol.

Crystallogr. 66, 213–221 (2010).

77. Kondo, N., Miyauchi, K. & Matsuda, Z. Monitoring viral-mediated

membrane fusion using fluorescent reporter methods. Curr. Protoc.

Cell Biol Chapter 26, Unit 26 29, https://doi.org/10.1002/

0471143030.cb2609s50 (2011).

78. Sano, E. et al. Cell response analysis in SARS-CoV-2 infected

bronchial organoids. Commun. Biol. 5, 516 (2022).

79. Yamamoto, Y. et al. Long-term expansion of alveolar stem cells

derived from human iPS cells in organoids. Nat. Methods 14,

1097–1106 (2017).

80. Konishi, S. et al. Directed induction of functional multi-ciliated cells

in proximal airway epithelial spheroids from human pluripotent

stem cells. Stem Cell Rep. 6, 18–25 (2016).

81. Gotoh, S. et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell

Rep. 3, 394–403 (2014).

82. Deguchi, S. et al. Usability of polydimethylsiloxane-based microfluidic devices in pharmaceutical research using human hepatocytes. ACS Biomater. Sci. Eng. 7, 3648–3657 (2021).

Acknowledgements

The authors would like to thank all members belonging to The Genotype

to Phenotype Japan (G2P-Japan) Consortium. We thank Dr. Kenzo

Tokunaga (National Institute for Infectious Diseases, Japan) and Dr. Jin

Gohda (The University of Tokyo, Japan) for providing reagents. We also

thank the National Institute for Infectious Diseases, Japan, for providing

clinical isolates of BQ.1.1 (strain TY41-796-P1; GISAID ID:

EPI_ISL_15579783) and BA.2 (strain TY40-385; GISAID ID:

EPI_ISL_9595859). We appreciate the technical assistance to the BL32XU

beamline staff at SPring-8 and from The Research Support Center,

Research Center for Human Disease Modeling, Kyushu University

Graduate School of Medical Sciences. We gratefully acknowledge all

data contributors, i.e., the Authors and their Originating laboratories

responsible for obtaining the specimens, and their Submitting laboratories for generating the genetic sequence and metadata and sharing via

the GISAID Initiative, on which this research is based. The supercomputing resource was provided by the Human Genome Center at The

University of Tokyo. This study was supported in part by AMED SCARDA

Japan Initiative for World-leading Vaccine Research and Development

Centers “UTOPIA” (JP223fa627001, to K.S.), AMED SCARDA Program on

R&D of new generation vaccine including new modality application

(JP223fa727002, to K.S.); AMED SCRADA Kyoto University Immunomonitoring Center (KIC) (JP223fa627009, to T.H.); AMED SCARDA Worldleading institutes for vaccine research and development Hokkaido

18

Article

Synergy Campus (223fa627005h0001, to K.M., and T.F.); AMED

Research Program on Emerging and Re-emerging Infectious Diseases

(JP21fk0108574, to H.N.; JP21fk0108465, to A.S.; JP22fk0108516, to T.F.;

JP21fk0108493, to Takasuke Fukuhara; JP22fk0108617 to T.F.;

JP22fk0108146, to K.S.; JP21fk0108494 to G2P-Japan Consortium, K.M.,

S.T., T.I., T.F., and K.S.; JP21fk0108425, to K.T., A.S., and K.S.;

22fk0108506, to K.T., A.S., and K.S.; JP21fk0108432, to K.T., T.F., and

K.S.); AMED Research Program on HIV/AIDS (JP22fk0410033, to A.S.;

JP22fk0410047, to A.S.; JP22fk0410055, to T.I.; and JP22fk0410039, to

K.S.); AMED CRDF Global Grant (JP22jk0210039 to A.S.); AMED Japan

Program for Infectious Diseases Research and Infrastructure

(JP22wm0325009, to A.S.; JP22wm0125008 to K.M.); AMED CREST

(JP21gm1610005, to K.T.; JP22gm1610008, to T.F.); JST PRESTO

(JPMJPR22R1, to J.I.); JST CREST (JPMJCR20H4, to K.S.; JPMJCR20H8, to

T.H.); JSPS KAKENHI Grant-in-Aid for Scientific Research C (22K07103, to

T.I.); JSPS KAKENHI Grant-in-Aid for Scientific Research B (21H02736, to

T.F.); JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (22K16375,

to H.N.; 20K15767 and 23K14526, J.I.); JSPS KAKENHI grant 20H05773 (to

T.H.); JSPS Core-to-Core Program (A. Advanced Research Networks)

(JPJSCCA20190008, to K.S.); JSPS Research Fellow DC2 (22J11578, to

K.U.); JSPS Leading Initiative for Excellent Young Researchers (LEADER)

(to T.I.); World-leading Innovative and Smart Education (WISE) Program

1801 from the Ministry of Education, Culture, Sports, Science and

Technology (MEXT) (to N.N.); Research Support Project for Life Science

and Drug Discovery [Basis for Supporting Innovative Drug Discovery and

Life Science Research (BINDS)] from AMED under the Grant

JP22ama121001 (to T.H.); The Cooperative Research Program (Joint

Usage/Research Center program) of Institute for Life and Medical Sciences, Kyoto University (to K.S.); The Tokyo Biochemical Research

Foundation (to K.S.); Takeda Science Foundation (to T.I.); Mochida

Memorial Foundation for Medical and Pharmaceutical Research (to T.I.);

The Naito Foundation (to T.I.); Shin-Nihon Foundation of Advanced

Medical Research (to T.I.); Waksman Foundation of Japan (to T.I.); an

intramural grant from Kumamoto University COVID-19 Research Projects

(AMABIE) (to T.I.); the Ito Foundation Research Grant (to A.S.); International Joint Research Project of the Institute of Medical Science, the

University of Tokyo (to T.I., T.F., and A.S.); the UK’s Medical Research

Council (to S.L.); and the project of National Institute of Virology and

Bacteriology, Programme EXCELES, funded by the European Union,

Next Generation EU (LX22NPO5103, to J.Z.).

Author contributions

J.I. and S.L. performed phylogenetic analyses. J.I. performed statistical,

modeling, and bioinformatics analyses. K.U., S.D., H.N., M.S., M.S.T.M.B.,

S.F., A.S., K.T., and T.I. performed the cell culture experiments. R.S., Y.I.,

T.T., I.K., K.Y., H.I., N.N., K.M., and T.F. performed animal experiments.

L.W., M.T., Y.O., and S.T. performed histopathological analysis. J.Z. and

G.S. performed the yeast surface display assay. S.D. and K.T. prepared

AO-ALI and airway-on-a-chip systems. Y.Y. and T.N. performed the

generation and provision of human iPSC-derived airway and alveolar

epithelial cells. J.S., K.S.-T., and T.H. prepared BQ.1.1 S RBD and human

https://doi.org/10.1038/s41467-023-38188-z

ACE2. K.T.K., T.S., and T.H. determined the structure of the BQ.1.1 RBD

and human ACE2 complex. H.A., M.N., K.S., and K.Y. performed viral

genome sequencing analysis. J.K. contributed to clinical sample collection. J.I., A.S., K.M., K.T., S.T., T.F., T.I., and K.S. designed the experiments and interpreted the results. J.I. and K.S. wrote the original

manuscript. All authors reviewed and proofread the manuscript. The

Genotype to Phenotype Japan (G2P-Japan) Consortium contributed to

the project administration.

Competing interests

Y.Y. and T.N. are founders and shareholders of HiLung, Inc. Y.Y. is a

coinventor of patents (PCT/JP2016/057254; “Method for inducing differentiation of alveolar epithelial cells”, PCT/JP2016/059786, “Method of

producing airway epithelial cells”). The other authors declare that no

competing interests exist.

Additional information

Supplementary information The online version contains supplementary

material available at

https://doi.org/10.1038/s41467-023-38188-z.

Correspondence and requests for materials should be addressed to

Takao Hashiguchi, Shinya Tanaka, Takasuke Fukuhara, Terumasa Ikeda or

Kei Sato.

Peer review information Nature Communications thanks Jason Kindrachuk and the other, anonymous, reviewer(s) for their contribution to

the peer review of this work. A peer review file is available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan. 3Graduate School of Medicine, The University of

Tokyo, Tokyo, Japan. 4Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan. 5Department of

Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel. 6First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia.

Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan. 8Center for iPS Cell Research and Application (CiRA),

Kyoto University, Kyoto, Japan. 9Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan. 10Institute for Chemical Reaction

Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan. 11Medical Research Council-University of Glasgow Centre for Virus Research,

Glasgow, UK. 12Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan. 13Division of

Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan. 14Department of Clinical

Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt. 15Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki,

Miyazaki, Japan. 16Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan. 17Department of Medicinal Sciences,

Nature Communications | (2023)14:2671

19

Article

https://doi.org/10.1038/s41467-023-38188-z

Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan. 18Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.

19

Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan. 20Tokyo Metropolitan

Institute of Public Health, Tokyo, Japan. 21HiLung, Inc, Kyoto, Japan. 22Interpark Kuramochi Clinic, Utsunomiya, Japan. 23Department of Global Health

Promotion, Tokyo Medical and Dental University, Tokyo, Japan. 24Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan. 25One Health

Research Center, Hokkaido University, Sapporo, Japan. 26Institute for Vaccine Research and Development: HU-IVReD, Hokkaido University, Sapporo, Japan.

27

International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan. 28AMED-CREST, Japan Agency for

Medical Research and Development (AMED), Tokyo, Japan. 29Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University,

Suita, Japan. 30International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. 31International

Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. 32Graduate School of Frontier Sciences, The University of

Tokyo, Kashiwa, Japan. 33Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan.

34

CREST, Japan Science and Technology Agency, Kawaguchi, Japan. 40These authors contributed equally: Jumpei Ito, Rigel Suzuki, Keiya Uriu, Yukari Itakura,

e-mail: hashiguchi.takao.1a@kyoto-u.ac.jp; tanaka@med.hokudai.ac.jp;

Jiri Zahradnik, Kanako Terakado Kimura, Sayaka Deguchi, Lei Wang, Spyros Lytras.

fukut@pop.med.hokudai.ac.jp; ikedat@kumamoto-u.ac.jp; KeiSato@g.ecc.u-tokyo.ac.jp

The Genotype to Phenotype Japan (G2P-Japan) Consortium

Saori Suzuki2, Marie Kato9, Zannatul Ferdous9, Hiromi Mouri9, Kenji Shishido9, Naoko Misawa1, Izumi Kimura1,

Yusuke Kosugi1, Pan Lin1, Mai Suganami1, Mika Chiba1, Ryo Yoshimura1, Kyoko Yasuda1, Keiko Iida1, Naomi Ohsumi1,

Adam P. Strange1, Daniel Sauter1,35, So Nakagawa36, Jiaqi Wu36, Yukio Watanabe8, Ayaka Sakamoto8, Naoko Yasuhara8,

Yukari Nakajima37, Hisano Yajima37, Kotaro Shirakawa37, Akifumi Takaori-Kondo37, Kayoko Nagata37, Yasuhiro Kazuma37,

Ryosuke Nomura37, Yoshihito Horisawa37, Yusuke Tashiro37, Yugo Kawa37, Takashi Irie38, Ryoko Kawabata38, Ryo Shimizu13,

Otowa Takahashi13, Kimiko Ichihara13, Chihiro Motozono39, Mako Toyoda39, Takamasa Ueno39, Yuki Shibatani15 &

Tomoko Nishiuchi15

35

University Hospital Tübingen, Tübingen, Germany. 36Tokai University School of Medicine, Isehara, Japan. 37Kyoto University, Kyoto, Japan. 38Hiroshima

University, Hiroshima, Japan. 39Kumamoto University, Kumamoto, Japan.

Nature Communications | (2023)14:2671

20

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る