リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants

Tamura, Tomokazu Ito, Jumpei Uriu, Keiya Zahradnik, Jiri Kida, Izumi Anraku, Yuki Nasser, Hesham Shofa, Maya Oda, Yoshitaka Lytras, Spyros Nao, Naganori Itakura, Yukari Deguchi, Sayaka Suzuki, Rigel Wang, Lei Begum, MST Monira Kita, Shunsuke Yajima, Hisano Sasaki, Jiei Sasaki-Tabata, Kaori Shimizu, Ryo Tsuda, Masumi Kosugi, Yusuke Fujita, Shigeru Pan, Lin Sauter, Daniel Yoshimatsu, Kumiko Suzuki, Saori Asakura, Hiroyuki Nagashima, Mami Sadamasu, Kenji Yoshimura, Kazuhisa Yamamoto, Yuki Nagamoto, Tetsuharu Schreiber, Gideon Maenaka, Katsumi The Genotype to Phenotype Japan (G2P-Japan) Hashiguchi, Takao Ikeda, Terumasa Fukuhara, Takasuke Saito, Akatsuki Tanaka, Shinya Matsuno, Keita Takayama, Kazuo Sato, Kei 京都大学 DOI:10.1038/s41467-023-38435-3

2023

概要

In late 2022, SARS-CoV-2 Omicron subvariants have become highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged through the recombination of two cocirculating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022. XBB.1 is the variant most profoundly resistant to BA.2/5 breakthrough infection sera to date and is more fusogenic than BA.2.75. The recombination breakpoint is located in the receptor-binding domain of spike, and each region of the recombinant spike confers immune evasion and increases fusogenicity. We further provide the structural basis for the interaction between XBB.1 spike and human ACE2. Finally, the intrinsic pathogenicity of XBB.1 in male hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provides evidence suggesting that XBB is the first observed SARS-CoV-2 variant to increase its fitness through recombination rather than substitutions.

この論文で使われている画像

関連論文

参考文献

21.

1.

2.

3.

WHO. Tracking SARS-CoV-2 variants (March 30, 2023) https://

www.who.int/en/activities/tracking-SARS-CoV-2-variants.

(2022).

Ito, J. et al. Convergent evolution of the SARS-CoV-2 Omicron

subvariants leading to the emergence of BQ.1.1 variant. Nat. Commun. 14, 2671 (2023).

Focosi, D., Quiroga, R., McConnell, S. A., Johnson, M. C. & Casadevall, A. Convergent evolution in SARS-CoV-2 Spike creates a

variant soup that causes new COVID-19 waves. BioRxiv, (2022)

https://doi.org/10.1101/2022.1112.1105.518843.

Nature Communications | (2023)14:2800

22.

23.

24.

Tuekprakhon, A. et al. Antibody escape of SARS-CoV-2 Omicron

BA.4 and BA.5 from vaccine and BA.1 serum. Cell 185, 2422–2433

(2022). e2413.

Kimura, I. et al. Virological characteristics of the novel SARS-CoV-2

Omicron variants including BA.4 and BA.5. Cell 185, 3992–4007

(2022). e3916.

Makowski, E. K., Schardt, J. S., Smith, M. D. & Tessier, P. M. Mutational analysis of SARS-CoV-2 variants of concern reveals key tradeoffs between receptor affinity and antibody escape. PLoS

Comput. Biol. 18, e1010160 (2022).

Aggarwal, A. et al. Mechanistic insights into the effects of key

mutations on SARS-CoV-2 RBD-ACE2 binding. Phys. Chem. Chem.

Phys. 23, 26451–26458 (2021).

Deshpande, A., Harris, B. D., Martinez-Sobrido, L., Kobie, J. J. &

Walter, M. R. Epitope classification and RBD binding properties of

neutralizing antibodies against SARS-CoV-2 variants of concern.

Front Immunol 12, 691715 (2021).

Chen, J., Wang, R., Wang, M. & Wei, G. W. Mutations strengthened

SARS-CoV-2 infectivity. J. Mol. Biol 432, 5212–5226 (2020).

Saito, A. et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant. Cell Host Microbe 30, 1540–1555

(2022). e1515.

Qu, P. et al. Evasion of neutralizing antibody responses by the SARSCoV-2 BA.2.75 variant. Cell Host Microbe 30, 1518–1526

(2022). e1514.

Arora, P. et al. Omicron sublineage BQ.1.1 resistance to monoclonal

antibodies. Lancet Infect. Dis. https://doi.org/10.1016/S14733099(22)00733-2 (2022).

Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces

convergent Omicron RBD evolution. Nature 614, 521–529 (2023).

Wang, Q. et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4, & BA.5. Nature https://doi.org/10.1038/

s41586-022-05053-w (2022).

Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by

Omicron infection. Nature https://doi.org/10.1038/s41586-02204980-y (2022).

GitHub. BJ.1/BM.1.1.1 (=BA.2.75.3.1.1.1) recombinant with breakpoint

in S1 [> = 5 sequences, 3x Singapore, 2x US as of 2022-09-12]

(September 13, 2022). https://github.com/cov-lineages/pangodesignation/issues/1058. (2022).

WHO. TAG-VE statement on Omicron sublineages BQ.1 and XBB

(October 27, 2022) https://www.who.int/news/item/27-10-2022tag-ve-statement-on-omicron-sublineages-bq.1-and-xbb. (2022).

Wang, Q. et al. Antigenic characterization of the SARS-CoV-2

Omicron subvariant BA.2.75. Cell Host Microbe 30, 1512–1517

(2022). e1514.

Martin, D. P. et al. RDP5: a computer program for analyzing

recombination in, and removing signals of recombination from,

nucleotide sequence datasets. Virus Evol 7, veaa087 (2021).

GitHub. BE.1.1.1 sublineage with Orf1b:Y264H and S:N460K

(69 sequences) emerged in Nigeria (14 seqs) (August 26, 2022).

https://github.com/cov-lineages/pango-designation/issues/

993. (2022).

Smith, D. J. et al. Mapping the antigenic and genetic evolution of

influenza virus. Science 305, 371–376 (2004).

Dejnirattisai, W. et al. SARS-CoV-2 Omicron-B.1.1.529 leads to

widespread escape from neutralizing antibody responses. Cell 185,

467–484 (2022). e415.

Zahradnik, J. et al. SARS-CoV-2 variant prediction and antiviral drug

design are enabled by RBD in vitro evolution. Nat. Microbiol 6,

1188–1198 (2021).

Motozono, C. et al. SARS-CoV-2 spike L452R variant evades cellular

immunity and increases infectivity. Cell Host Microbe 29,

1124–1136 (2021).

16

Article

25. Suzuki, R. et al. Attenuated fusogenicity and pathogenicity of SARSCoV-2 Omicron variant. Nature 603, 700–705 (2022).

26. Saito, A. et al. Enhanced fusogenicity and pathogenicity of SARSCoV-2 Delta P681R mutation. Nature 602, 300–306 (2022).

27. Yamasoba, D. et al. Virological characteristics of the SARS-CoV-2

Omicron BA.2 spike. Cell 185, 2103–2115 (2022). e2119.

28. Nasser, H. et al. Monitoring fusion kinetics of viral and target cell

membranes in living cells using a SARS-CoV-2 spike-proteinmediated membrane fusion assay. STAR Protoc. 3, 101773 (2022).

29. Kimura, I. et al. The SARS-CoV-2 spike S375F mutation characterizes

the Omicron BA.1 variant. iScience 25, 105720 (2022).

30. Cao, Y. et al. Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75. Cell Host Microbe 30, 1527–1539

(2022). e1525.

31. Stalls, V. et al. Cryo-EM structures of SARS-CoV-2 Omicron

BA.2 spike. Cell Rep. 39, 111009 (2022).

32. Mannar, D. et al. SARS-CoV-2 Omicron variant: Antibody evasion

and cryo-EM structure of spike protein-ACE2 complex. Science 375,

760–764 (2022).

33. Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding

domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).

34. Shang, J. et al. Structural basis of receptor recognition by SARSCoV-2. Nature 581, 221–224 (2020).

35. Han, P. et al. Receptor binding and complex structures of human

ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell

https://doi.org/10.1016/j.cell.2022.01.001 (2022).

36. Li, L. et al. Structural basis of human ACE2 higher binding affinity to

currently circulating Omicron SARS-CoV-2 sub-variants BA.2 and

BA.1.1. Cell 185, 2952–2960 (2022). e2910.

37. Hashimoto, R. et al. SARS-CoV-2 disrupts the respiratory vascular

barrier by suppressing Claudin-5 expression. Sci Adv 8,

eabo6783 (2022).

38. Tamura, T. et al. Comparative pathogenicity of SARS-CoV-2 Omicron subvariants including BA.1, BA.2, and BA.5. BioRxiv, (2022)

https://doi.org/10.1101/2022.1108.1105.502758.

39. Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated

disease in mice and hamsters. Nature https://doi.org/10.1038/

s41586-022-04441-6 (2022).

40. Uriu, K. et al. Enhanced transmissibility, infectivity, and immune

resistance of the SARS-CoV-2 omicron XBB.1.5 variant. Lancet Infect

Dis. 23, 280–281 (2023).

41. Yue, C. et al. ACE2 binding and antibody evasion in enhanced

transmissibility of XBB.1.5. Lancet Infect Dis. 23, 278–280 (2023).

42. Wang, Q. et al. Alarming antibody evasion properties of rising SARSCoV-2 BQ and XBB subvariants. Cell 186, 279–286 (2023). e278.

43. Mykytyn, A. Z. et al. Antigenic mapping of emerging SARS-CoV-2

omicron variants BM.1.1.1, BQ.1.1, and XBB.1. Lancet Microbe https://

doi.org/10.1016/S2666-5247(22)00384-6 (2023).

44. Miller, J. et al. Substantial Neutralization Escape by SARS-CoV-2

Omicron Variants BQ.1.1 and XBB.1. N. Engl. J. Med. 388,

662–664 (2023).

45. Arora, P. et al. Neutralisation sensitivity of the SARS-CoV-2 XBB.1

lineage. Lancet Infect Dis. 23, 147–148 (2023).

46. Shen, L. et al. Rapidly emerging SARS-CoV-2 B.1.1.7 sub-lineage in

the United States of America with spike protein D178H and membrane protein V70L mutations. Emerg Microbes Infect. 10,

1293–1299 (2021).

47. Zhang, L. et al. The significant immune escape of pseudotyped

SARS-CoV-2 variant Omicron. Emerg Microbes Infect. 11, 1–5 (2022).

48. Uriu, K. et al. Neutralization of the SARS-CoV-2 Mu variant by convalescent and vaccine serum. N. Engl. J. Med. 385,

2397–2399 (2021).

49. Uriu, K. et al. Characterization of the immune resistance of SARSCoV-2 Mu variant and the robust immunity induced by Mu infection.

J. Infect. Dis. https://doi.org/10.1093/infdis/jiac053 (2022).

Nature Communications | (2023)14:2800

https://doi.org/10.1038/s41467-023-38435-3

50. Cerutti, G. et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell

Host Microbe 29, 819–833 (2021). e817.

51. Sasaki, A., Lion, S. & Boots, M. Antigenic escape selects for the

evolution of higher pathogen transmission and virulence. Nat. Ecol.

Evol. 6, 51–62 (2022).

52. Ozono, S. et al. SARS-CoV-2 D614G spike mutation increases entry

efficiency with enhanced ACE2-binding affinity. Nat. Commun 12,

848 (2021).

53. Ferreira, I. et al. SARS-CoV-2 B.1.617 mutations L452R and E484Q

are not synergistic for antibody evasion. J. Infect. Dis. 224,

989–994 (2021).

54. Reeves, P. J., Callewaert, N., Contreras, R. & Khorana, H. G. Structure and function in rhodopsin: high-level expression of rhodopsin

with restricted and homogeneous N-glycosylation by a

tetracycline-inducible N-acetylglucosaminyltransferase I-negative

HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99,

13419–13424 (2002).

55. Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2expressing cells. Proc. Natl. Acad. Sci. USA 117, 7001–7003 (2020).

56. Fujita, S. et al. Structural Insight into the resistance of the SARSCoV-2 Omicron BA.4 and BA.5 variants to Cilgavimab. Viruses 14,

2677 (2022).

57. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one

FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

58. Li, H. & Durbin, R. Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

59. Li, H. et al. The sequence alignment/map format and SAMtools.

Bioinformatics 25, 2078–2079 (2009).

60. Cingolani, P. et al. A program for annotating and predicting the

effects of single nucleotide polymorphisms, SnpEff: SNPs in the

genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly

(Austin) 6, 80–92 (2012).

61. Lanfear, R. A global phylogeny of SARS-CoV-2 sequences from

GISAID. Zenodo https://doi.org/10.5281/zenodo.3958883. https://

zenodo.org/record/4289383#.Y6ER8C33ITs (2020).

62. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment

software version 7: improvements in performance and usability.

Mol. Biol. Evol. 30, 772–780 (2013).

63. Martin, D. & Rybicki, E. RDP: detection of recombination amongst

aligned sequences. Bioinformatics 16, 562–563 (2000).

64. Padidam, M., Sawyer, S. & Fauquet, C. M. Possible emergence of

new geminiviruses by frequent recombination. Virology 265,

218–225 (1999).

65. Posada, D. & Crandall, K. A. Evaluation of methods for detecting

recombination from DNA sequences: computer simulations. Proc.

Natl. Acad. Sci. USA 98, 13757–13762 (2001).

66. Smith, J. M. Analyzing the mosaic structure of genes. J. Mol. Evol.

34, 126–129 (1992).

67. Boni, M. F., Posada, D. & Feldman, M. W. An exact nonparametric

method for inferring mosaic structure in sequence triplets. Genetics

176, 1035–1047 (2007).

68. Martin, D. P., Posada, D., Crandall, K. A. & Williamson, C. A modified

bootscan algorithm for automated identification of recombinant

sequences and recombination breakpoints. AIDS Res. Hum. Retroviruses 21, 98–102 (2005).

69. Gibbs, M. J., Armstrong, J. S. & Gibbs, A. J. Sister-scanning: a Monte

Carlo procedure for assessing signals in recombinant sequences.

Bioinformatics 16, 573–582 (2000).

70. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately

maximum-likelihood trees for large alignments. PLoS One 5,

e9490 (2010).

71. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE:

a fast and effective stochastic algorithm for estimating maximumlikelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

17

Article

72. Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring

the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016).

73. Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data

integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

74. Duchene, S. et al. Temporal signal and the phylodynamic threshold

of SARS-CoV-2. Virus Evol. 6, veaa061 (2020).

75. Kimura, I. et al. The SARS-CoV-2 Lambda variant exhibits enhanced

infectivity and immune resistance. Cell Rep. 38, 110218 (2022).

76. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for highexpression transfectants with a novel eukaryotic vector. Gene 108,

193–199 (1991).

77. Yamasoba, D. et al. Neutralisation sensitivity of SARS-CoV-2 omicron subvariants to therapeutic monoclonal antibodies. Lancet

Infect. Dis. 22, 942–943 (2022).

78. Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron

impacts tropism and fusogenicity. Nature 603, 706–714 (2022).

79. Reed, L. J. & Muench, H. A simple method of estimating fifty percent

endpoints. Am. J. Hygiene 27, 493–497 (1938).

80. Zahradnik, J. et al. A protein-engineered, enhanced yeast display

platform for rapid evolution of challenging targets. ACS Synth. Biol.

10, 3445–3460 (2021).

81. Ozono, S., Zhang, Y., Tobiume, M., Kishigami, S. & Tokunaga, K.

Super-rapid quantitation of the production of HIV-1 harboring a

luminescent peptide tag. J. Biol. Chem. 295, 13023–13030 (2020).

82. Kondo, N., Miyauchi, K. & Matsuda, Z. Monitoring viral-mediated

membrane fusion using fluorescent reporter methods. Curr. Protoc.

Cell Biol (2011) Chapter 26, Unit 26 29, https://doi.org/10.1002/

0471143030.cb2609s50.

83. Hsieh, C. L. et al. Structure-based design of prefusion-stabilized

SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).

84. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

85. Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit

all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).

86. Pettersen, E. F. et al. UCSF Chimera—a visualization system for

exploratory research and analysis. J. Comput. Chem. 25,

1605–1612 (2004).

87. Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges

in visualization and analysis. Protein Sci. 27, 14–25 (2018).

88. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and

development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66,

486–501 (2010).

89. Liebschner, D. et al. Macromolecular structure determination using

X-rays, neutrons and electrons: recent developments in Phenix.

Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

90. Williams, C. J. et al. MolProbity: More and better reference data for

improved all-atom structure validation. Protein Sci. 27,

293–315 (2018).

91. Sano, E. et al. Cell response analysis in SARS-CoV-2 infected

bronchial organoids. Commun Biol. 5, 516 (2022).

92. Yamamoto, Y. et al. Long-term expansion of alveolar stem cells

derived from human iPS cells in organoids. Nat. Methods 14,

1097–1106 (2017).

93. Konishi, S. et al. Directed induction of functional multi-ciliated cells

in proximal airway epithelial spheroids from human pluripotent

stem cells. Stem Cell Rep. 6, 18–25 (2016).

94. Gotoh, S. et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell

Rep. 3, 394–403 (2014).

95. Deguchi, S. et al. Usability of polydimethylsiloxane-based microfluidic devices in pharmaceutical research using human hepatocytes. ACS Biomater Sci Eng 7, 3648–3657 (2021).

Nature Communications | (2023)14:2800

https://doi.org/10.1038/s41467-023-38435-3

96. Huo, J. et al. A delicate balance between antibody evasion and

ACE2 affinity for Omicron BA.2.75. Cell Rep. 42, 111903 (2023).

Acknowledgements

We would like to thank all members belonging to The Genotype to Phenotype Japan (G2P-Japan) Consortium. We thank Dr. Jin Kuramochi

(Interpark Kuramochi Clinic, Japan) for providing patient sera, Dr. Kenzo

Tokunaga (National Institute for Infectious Diseases, Japan) and Dr. Jin

Gohda (The University of Tokyo, Japan) for providing reagents. We also

thank National Institute for Infectious Diseases, Japan for providing clinical

isolates of BQ.1.1 (strain TY41-796-P1; GISAID ID: EPI_ISL_15579783) and

BA.2 (strain TY40-385; GISAID ID: EPI_ISL_9595859). We appreciate the

technical assistance from The Research Support Center, Research Center

for Human Disease Modeling, Kyushu University Graduate School of

Medical Sciences. We gratefully acknowledge all data contributors, i.e.

the Authors and their Originating laboratories responsible for obtaining

the specimens, and their Submitting laboratories for generating the

genetic sequence and metadata and sharing via the GISAID Initiative, on

which this research is based. The super-computing resource was provided by Human Genome Center at The University of Tokyo. This study

was supported in part by AMED SCARDA Japan Initiative for World-leading

Vaccine Research and Development Centers “UTOPIA” (JP223fa627001,

to Kei Sato), AMED SCARDA Program on R&D of new generation vaccine

including new modality application (JP223fa727002, to Kei Sato); AMED

SCARDA Kyoto University Immunomonitoring Center (KIC)

(JP223fa627009, to Takao Hashiguchi); AMED SCARDA World-leading

institutes for vaccine research and development Hokkaido Synergy

Campus (JP223fa627005 to Takasuke Fukuhara and Keita Matsuno); AMED

Research Program on Emerging and Re-emerging Infectious Diseases

(JP21fk0108574, to Hesham Nasser; JP21fk0108481, to Akatsuki Saito;

JP21fk0108465, to Akatsuki Saito; JP21fk0108493, to Takasuke Fukuhara;

JP21fk0108463 to Katsumi Maenaka; JP22fk0108617 to Takasuke Fukuhara; JP22fk0108146, to Kei Sato; JP21fk0108494 to G2P-Japan Consortium, Keita Matsuno, Shinya Tanaka, Terumasa Ikeda, Takasuke

Fukuhara, and Kei Sato; JP21fk0108425, to Kazuo Takayama, Akatsuki Saito

and Kei Sato; 22fk0108506, to Kazuo Takayama, Akatsuki Saito, and Kei

Sato; JP21fk0108432, to Kazuo Takayama, Takasuke Fukuhara and Kei

Sato); AMED Research Program on HIV/AIDS (JP22fk0410033, to Akatsuki

Saito; JP22fk0410047, to Akatsuki Saito; JP22fk0410055, to Terumasa

Ikeda; and JP22fk0410039, to Kei Sato); AMED CRDF Global Grant

(JP22jk0210039 to Akatsuki Saito); AMED Japan Program for Infectious

Diseases Research and Infrastructure (JP22wm0325009, to Akatsuki

Saito; JP22wm0125008 to Keita Matsuno); AMED Japan Initiative for

World-leading Vaccine Research and Development Centers

(JP223fa627005 to Katsumi Maenaka); AMED Project Focused on Developing Key Technology for Discovering and Manufacturing Drugs for NextGeneration Treatment and Diagnosis (JP20ae0101047 to Katsumi Maenaka); AMED Platform Project for Supporting Drug Discovery and Life

Science Research (JP21am0101093 to Katsumi Maenaka); AMED Basis for

supporting innovative drug discovery and life science research, phase 2

(JP22ama121037 to Katsumi Maenaka); AMED Advanced Research &

Development Programs for Medical Innovation (JP22gm1810004 to Katsumi Maenaka); AMED CREST (JP21gm1610005, to Kazuo Takayama); JST

PRESTO (JPMJPR22R1, to Jumpei Ito); JST CREST (JPMJCR20H4, to Kei

Sato; JPMJCR20H8, to Takao Hashiguchi); JSPS KAKENHI Grant-in-Aid for

Scientific Research C (22K07103, to Terumasa Ikeda); JSPS KAKENHI

Grant-in-Aid for Scientific Research B (21H02736, to Takasuke Fukuhara);

JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (22K16375, to

Hesham Nasser; 20K15767, to Jumpei Ito; 23K14526 to Jumpei Ito); JSPS

KAKENHI Grant-in-Aid for Transformative Research Areas B (20H05773 to

Takao Hashiguchi); JSPS KAKENHI Grant-in-Aid for Scientific Research on

Innovative Areas (JP20H05873, to Katsumi Maenaka); JSPS Core-to-Core

Program (A. Advanced Research Networks) (JPJSCCA20190008, to Kei

Sato); JSPS Research Fellow DC2 (22J11578, to Keiya Uriu); JSPS Leading

Initiative for Excellent Young Researchers (LEADER) (to Terumasa Ikeda);

18

Article

World-leading Innovative and Smart Education (WISE) Program 1801 from

the Ministry of Education, Culture, Sports, Science and Technology

(MEXT) (to Naganori Nao); The Cooperative Research Program (Joint

Usage/Research Center program) of Institute for Life and Medical Sciences, Kyoto University (to Kei Sato); The Tokyo Biochemical Research

Foundation (to Kei Sato); Takeda Science Foundation (to Terumasa Ikeda

and Katsumi Maenaka); Mochida Memorial Foundation for Medical and

Pharmaceutical Research (to Terumasa Ikeda); The Naito Foundation (to

Terumasa Ikeda); Shin-Nihon Foundation of Advanced Medical Research

(to Terumasa Ikeda); Waksman Foundation of Japan (to Terumasa Ikeda);

an intramural grant from Kumamoto University COVID-19 Research Projects (AMABIE) (to Terumasa Ikeda); Ito Foundation Research Grant R4 (to

Akatsuki Saito); International Joint Research Project of the Institute of

Medical Science, the University of Tokyo (to Jiri Zahradnik, Daniel Sauter,

Terumasa Ikeda, Takasuke Fukuhara, and Akatsuki Saito); the Federal

Ministry of Education and Research Germany (BMBF; 01KI20135, to Daniel

Sauter); the Canon Foundation Europe (to Daniel Sauter), the Heisenberg

Program of the German Research Foundation (DFG; SA 2676/3-1, to Daniel

Sauter); grants of the COVID-19 program of the Ministry of Science,

Research and the Arts Baden-Württemberg (MWK; K.N.K.C.014 and

K.N.K.C.015, to Daniel Sauter); and the project of National Institute of

Virology and Bacteriology, Programme EXCELES, funded by the European

Union, Next Generation EU (LX22NPO5103, to Jiri Zahradnik).

Author contributions

J.I. performed bioinformatics, modeling, and statistical analysis.

Competing interests

Y.Y. and T.N. are founders and shareholders of HiLung, Inc. Y.Y. is a coinventor of patents (PCT/JP2016/057254; “Method for inducing differentiation of alveolar epithelial cells”, PCT/JP2016/059786, “Method of

producing airway epithelial cells”). The other authors declare that no

competing interests exist.

https://doi.org/10.1038/s41467-023-38435-3

Additional information

Supplementary information The online version contains supplementary

material available at

https://doi.org/10.1038/s41467-023-38435-3.

Correspondence and requests for materials should be addressed to

Shinya Tanaka, Keita Matsuno, Kazuo Takayama or Kei Sato.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A

peer review file is available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan. 2Institute for Vaccine Research and Development,

HU-IVReD, Hokkaido University, Sapporo, Japan. 3Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical

Science, The University of Tokyo, Tokyo, Japan. 4Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. 5Department of Biomolecular Sciences,

Weizmann Institute of Science, Rehovot, Israel. 6First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia. 7Division of Risk Analysis and

Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan. 8Laboratory of Biomolecular Science and Center for Research

and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan. 9Division of Molecular Virology and Genetics,

Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan. 10Department of Clinical Pathology, Faculty of Medicine, Suez

Canal University, Ismailia, Egypt. 11Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan. 12Graduate School of

Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan. 13Department of Cancer Pathology, Faculty of Medicine, Hokkaido University,

Sapporo, Japan. 14Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK. 15Division of International Research Promotion,

International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan. 16One Health Research Center, Hokkaido University, Sapporo, Japan.

17

Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan. 18Center for iPS Cell Research and

Application (CiRA), Kyoto University, Kyoto, Japan. 19Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.

20

Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan. 21Department of Medicinal Sciences, Graduate

School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan. 22Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.

23

Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany. 24Institute for Genetic Medicine,

Hokkaido University, Sapporo, Japan. 25Tokyo Metropolitan Institute of Public Health, Tokyo, Japan. 26HiLung, Inc., Kyoto, Japan. 27Global Station for

Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan. 28Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido

University, Sapporo, Japan. 29CREST, Japan Science and Technology Agency, Kawaguchi, Japan. 30AMED-CREST, Japan Agency for Medical Research and

Development (AMED), Tokyo, Japan. 31Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan. 32Center for

Animal Disease Control, University of Miyazaki, Miyazaki, Japan. 33International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido

University, Sapporo, Japan. 34International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

35

International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. 36Collaboration Unit for Infection, Joint

Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan. 41These authors contributed equally: Tomokazu Tamura, Jumpei

e-mail: tanaka@med.hokudai.ac.jp;

Ito, Keiya Uriu, Jiri Zahradnik, Izumi Kida, Yuki Anraku, Hesham Nasser, Maya Shofa, Yoshitaka Oda, Spyros Lytras.

matsuk@czc.hokudai.ac.jp; kazuo.takayama@cira.kyoto-u.ac.jp; KeiSato@g.ecc.u-tokyo.ac.jp

Nature Communications | (2023)14:2800

19

Article

https://doi.org/10.1038/s41467-023-38435-3

The Genotype to Phenotype Japan (G2P-Japan) Consortium

Hayato Ito1, Naoko Misawa3, Izumi Kimura3, Mai Suganami3, Mika Chiba3, Ryo Yoshimura3, Kyoko Yasuda3, Keiko Iida3,

Naomi Ohsumi3, Adam P. Strange3, Otowa Takahashi9, Kimiko Ichihara9, Yuki Shibatani11, Tomoko Nishiuchi11, Marie Kato13,

Zannatul Ferdous13, Hiromi Mouri13, Kenji Shishido13, Hirofumi Sawa2,15,16,17, Rina Hashimoto18, Yukio Watanabe18,

Ayaka Sakamoto18, Naoko Yasuhara18, Tateki Suzuki20, Kanako Kimura20, Yukari Nakajima20, So Nakagawa37, Jiaqi Wu37,

Kotaro Shirakawa38, Akifumi Takaori-Kondo38, Kayoko Nagata38, Yasuhiro Kazuma38, Ryosuke Nomura38,

Yoshihito Horisawa38, Yusuke Tashiro38, Yugo Kawai38, Takashi Irie39, Ryoko Kawabata39, Chihiro Motozono40,

Mako Toyoda40 & Takamasa Ueno40

37

Tokai University School of Medicine, Isehara, Japan. 38Kyoto University, Kyoto, Japan. 39Hiroshima University, Hiroshima, Japan. 40Kumamoto University,

Kumamoto, Japan.

Nature Communications | (2023)14:2800

20

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る