リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「SARS-CoV-2 Omicron BA.2.75 Variant May Be Much More Infective than Preexisting Variants Based on In Silico Model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

SARS-CoV-2 Omicron BA.2.75 Variant May Be Much More Infective than Preexisting Variants Based on In Silico Model

Sugano, Aki Takaoka, Yutaka Kataguchi, Haruyuki Ohta, Mika Kimura, Shigemi Araki, Masatake Morinaga, Yoshitomo Yamamoto, Yoshihiro 神戸大学

2022.10

概要

Previously, we developed a mathematical model via molecular simulation analysis to predict the infectivity of six SARS-CoV-2 variants. In this report, we aimed to predict the relative risk of the recent new variants of SARS-CoV-2 based on our previous research. We subjected Omicron BA.4/5 and BA.2.75 variants of SARS-CoV-2 to the analysis to determine the evolutionary distance of the spike protein gene (S gene) of the variants from the Wuhan variant so as to appreciate the changes in the spike protein. We performed molecular docking simulation analyses of the spike proteins with human angiotensin-converting enzyme 2 (ACE2) to understand the docking affinities of these variants. We then compared the evolutionary distances and the docking affinities of these variants with those of the variants that we had analyzed in our previous research. As a result, BA.2.75 has both the highest docking affinity (ratio per Wuhan variant) and the longest evolutionary distance of the S gene from the Wuhan variant. These results suggest that BA.2.75 infection can spread farther than can infections of preexisting variants.

関連論文

参考文献

1. Takaoka, Y.; Sugano, A.; Morinaga, Y.; Ohta, M.; Miura, K.; Kataguchi, H.; Kumaoka, M.; Kimura, S.; Maniwa, Y. Prediction of infectivity of SARS-CoV2: Mathematical model with analysis of docking simulation for spike proteins and angiotensin-converting enzyme 2. Microb. Risk Anal. 2022. [CrossRef] [PubMed]

2. Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [CrossRef] [PubMed]

3. Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [CrossRef] [PubMed]

4. National Center for Biotechnology Information, U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda MD, 20894 USA. Available online: http://www.ncbi.nlm.nih.gov (accessed on 1 June 2018).

5. Elbe, S.; Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Chall. 2017, 1, 33–46. [CrossRef] [PubMed]

6. Khare, S.; Gurry, C.; Freitas, L.; Schultz, M.B.; Bach, G.; Diallo, A.; Akite, N.; Ho, J.; Lee, R.T.; Yeo, W.; et al. GISAID’s Role in Pandemic Response. China CDC Wkly. 2021, 3, 1049–1051. [CrossRef]

7. Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics. 2018, 34, 4121–4123. [CrossRef] [PubMed]

8. Hodcroft, E.B. CoVariants: SARS-CoV-2 Mutations and Variants of Interest. Available online: https://covariants.org/ (accessed on 16 October 2021).

9. Hassine, I.H. COVID-19 vaccines and variants of concern: A review. Rev. Med Virol. 2021, 32, e2313. [CrossRef]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る