リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Exploring (1$$overline{1}$$2)-related ordered structure in oxidation-synthesized α-Fe₂O₃ nanowhiskers」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Exploring (1$$overline{1}$$2)-related ordered structure in oxidation-synthesized α-Fe₂O₃ nanowhiskers

Lai, Ming-Wei Kurata, Hiroki 京都大学 DOI:10.1007/s10853-021-05787-4

2021.04

概要

Hematite (α-Fe₂O₃) nanowhiskers (NWs) synthesized via oxidation of iron-based substrates are a promising photoanode material for photoelectrochemical water splitting. Such synthesized α-Fe₂O₃ NWs have been found to contain ordered axial structures. Herein, we reveal that the known (1$$overline{1}$$2)-related ordered structure actually exists in bicrystalline α-Fe₂O₃ NWs instead of single-crystalline α-Fe₂O₃ NWs and that it is associated with another known (3$$overline{3}$$0)-related ordered structure. Through a spherical aberration (CS)-corrected high-resolution transmission electron microscopy (HR-TEM) investigation, the microstructural characteristic of the (1$$overline{1}$$2)-related ordered structure is verified to be periodic atomic column displacements serving as tensile strain accommodation. The HR-TEM observation are also supported by a monochromated O K-edge EELS analysis, which indicates that α-Fe₂O₃ NWs hosting the (1$$overline{1}$$2)-related ordered structure are indeed associated with lattice expansion. In sum, our microstructural study elucidates the root cause of the long-asserted relationship between the (1$$overline{1}$$2)-related ordered structure and oxygen vacancy ordering.

この論文で使われている画像

参考文献

[1]

Sivula K, Le Formal F, Gra¨tzel M (2011) Solar water splitting: progress using hematite (a-Fe2O3) photoelectrodes.

Chemsuschem 4:432–449

[2] Tamirat AG, Rick J, Dubale AA, Su WN, Hwang BJ (2016)

Using hematite for photoelectrochemical water splitting: a

review of current progress and challenges. Nanoscale Horiz

1:243–267

[3] Mulmudi HK, Mathews N, Dou XC, Xi LF, Pramana SS,

Lam YM, Mhaisalkar SG (2011) Controlled growth of

hematite (a-Fe2O3) nanorod array on fluorine doped tin

oxide: synthesis and photoelectrochemical properties. Electrochem Commun 13:951–954

[4] Wen X, Wang S, Ding Y, Wang ZL, Yang S (2005) Controlled growth of large-area, uniform, vertically aligned

arrays of a-Fe2O3 nanobelts and nanowires. J Phys Chem B

109:215–220

[5] Chueh YL, Lai MW, Liang JQ, Chou LJ, Wang ZL (2006)

Systematic study of the growth of aligned arrays of a-Fe2O3

and Fe3O4 nanowires by a vapour–solid process. Adv Funct

Mater 16:2243–2251

[6] Cvelbar U, Chen Z, Sunkara MK, Mozeticˇ M (2008)

Spontaneous growth of superstructure a-Fe2O3 nanowire and

nanobelt arrays in reactive oxygen plasma. Small

4:1610–1614

[7] Srivastava H, Tiwari P, Srivastava AK, Rai S, Ganguli T,

Deb SK (2011) Effect of substrate texture on the growth of

hematite nanowires. Appl Surf Sci 258:494–500

[8] Xie Y, Ju Y, Toku Y, Morita Y (2017) Fabrication of Fe2O3

nanowire arrays based on oxidation-assisted stress-induced

atomic-diffusion and their photovoltaic properties for solar

water splitting. RSC Adv 7:30548–30553

[9] Srivastava H, Tiwari P, Srivastava AK, Nandedkar RV

(2007) Growth and characterization of a-Fe2O3 nanowires.

J Appl Phys 102:054303

[10] Yuan L, Wang Y, Cai R, Jiang Q, Wang J, Li B, Sharma A,

Zhou G (2012) The origin of hematite nanowire growth

during the thermal oxidation of iron. Mater Sci Eng B

177:327–336

[11] Lee YC, Chueh YL, Hsieh CH, Chang MT, Chou LJ, Wang

ZL, Lan YW, Chen CD, Kurata H, Isoda S (2007) p-type a-

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

7296

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Fe2O3 nanowires and their n-type transition in a reductive

ambient. Small 3:1356–1361

Chen Z, Cvelbar U, Mozeticˇ M, He J, Sunkara MK (2008)

Long-range ordering of oxygen-vacancy planes in a-Fe2O3

nanowires and nanobelts. Chem Mater 20:3224–3228

Zhu H, Deng J, Chen J, Yu R, Xing X (2014) Growth of

hematite nanowire arrays during dense pentlandite oxidation.

J Mater Chem A 2:3008–3014

Li T, Feng H, Wang Y, Wang C, Zhu W, Yuan L, Zhou G

(2018) Formation of modulated structures induced by oxygen vacancies in a-Fe2O3 nanowires. J Cryst Growth

498:10–16

Lai MW, Kurata H (2020) Understanding ordered structure

in hematite nanowhiskers synthesized via thermal oxidation

of iron-based substrates. Mater Des 191:108596

Yang TY, Kang HY, Sim U, Lee YJ, Lee JH, Koo B, Nam

KT, Joo YC (2013) A new hematite photoanode doping

strategy for solar water splitting: oxygen vacancy generation.

Phys Chem Chem Phys 15:2117–2124

Zhu C, Li C, Zheng M, Delaunay JJ (2015) Plasma-induced

oxygen vacancies in ultrathin hematite nanoflakes promoting

photoelectrochemical water oxidation. ACS Appl Mater

Interfaces 7:22355–22363

Rioult M, Stanescu D, Fonda E, Barbier A, Magnan H

(2016) Oxygen vacancies engineering of iron oxides films

for solar water splitting. J Phys Chem C 120:7482–7490

Mock J, Klingebiel B, Ko¨hler F, Nuys M, Flohre J, Muthmann S, Kirchartz T, Carius R (2017) Oxygen vacancy

doping of hematite analyzed by electrical conductivity and

thermoelectric power measurements. Phys Rev Mater

1:065407

Forster M, Potter RJ, Ling Y, Yang Y, Klug DR, Li Y, Cowan

AJ (2015) Oxygen deficient a-Fe2O3 photoelectrodes: a

balance between enhanced electrical properties and trapmediated losses. Chem Sci 6:4009–4016

Kirkland AI, Haigh S, Chang LY (2008) Aberration corrected TEM: current status and future prospects. J Phys Conf

Ser 126:012034

Ricolleau C, Nelayah J, Oikawa T, Kohno Y, Braidy N,

Wang G, Hue F, Alloyeau D (2012) High resolution imaging

and spectroscopy using Cs-corrected TEM with cold FEG

JEM-ARM200F. JEOL News 47:2–8

Mitterbauer C, Kothleitner G, Grogger W, Zandbergen H,

Freitag B, Tiemeijer P, Hofer F (2003) Electron energy-loss

near-edge structures of 3d transition metal oxides recorded at

high-energy resolution. Ultramicroscopy 96:469–480

Kimoto K (2014) Practical aspects of monochromators

developed for transmission electron microscopy. Microscopy

63:337–344

J Mater Sci (2021) 56:7286–7297

[25] Zheng Z, Chen Y, Shen Z, Ma J, Sow CH, Huang W, Yu T

(2007) Ultra-sharp a-Fe2O3 nanoflakes: growth mechanism

and field-emission. Appl Phys A 89:115–119

[26] Yuan L, Jiang Q, Wang J, Zhou G (2012) The growth of

hematite nanobelts and nanowires-tune the shape via oxygen

gas pressure. J Mater Res 27:1014–1021

[27] Xu R, Yan H, He W, Su Y, Nie JC, He L (2012) Ultrathin aFe2O3 nanoribbons and their Moire´ patterns. J Phys Chem C

116:6879–6883

[28] Yuan L, Cai R, Jang JI, Zhu W, Wang C, Wang Y, Zhou G

(2013) Morphological transformation of hematite nanostructures during oxidation of iron. Nanoscale 5:7581–7588

[29] Scott J, Thomas PJ, MacKenzie M, McFadzean S, Wilbrink

J, Craven AJ, Nicholson WAP (2008) Near-simultaneous

dual energy range EELS spectrum imaging. Ultramicroscopy

108:1586–1594

[30] Rehr JJ, Kas JJ, Vila FD, Prange MP, Jorissen K (2010)

Parameter-free calculations of X-ray spectra with FEFF9.

Phys Chem Chem Phys 12:5503–5513

[31] Williams DB, Carter CB (2009) Transmission electron

microscopy: a textbook for materials science. Springer, New

York

[32] Wang C, Wang Y, Liu X, Yang H, Sun J, Yuan L, Zhou G,

Rosei F (2016) Structure versus properties in a-Fe2O3

nanowires and nanoblades. Nanotechnology 27:035702

[33] Shen G, Chen PC, Bando Y, Golberg D, Zhou C (2008)

Bicrystalline Zn3P2 and Cd3P2 nanobelts and their electronic

transport properties. Chem Mater 20:7319–7323

[34] Srivastava H, Srivastava AK, Babu M, Rai S, Ganguli T

(2016) Topotaxial growth of a-Fe2O3 nanowires on iron

substrate in thermal annealing method. J Appl Phys

119:244311

[35] Watanabe Y, Ishii K (1995) Geometrical consideration of the

crystallography of the transformation from a-Fe2O3 to

Fe3O4. Phys Stat Sol (a) 150:673–686

[36] Frati F, Hunault MOJY, de Groot FMF (2020) Oxygen

K-edge X-ray absorption spectra. Chem Rev 120:4056–4110

[37] de Groot FMF, Grioni M, Fuggle JC, Ghijsen J, Sawatzky

GA, Petersen H (1989) Oxygen 1s x-ray-absorption edges of

transition-metal oxides. Phys Rev B 40:5715–5723

[38] Wu ZY, Gota S, Jollet F, Pollak M, Gautier-Soyer M, Natoli

CR (1997) Characterization of iron oxides by X-ray

absorption at the oxygen K edge using a full multiple-scattering approach. Phys Rev B 55:2570–2577

[39] Stavitski E, de Groot FMF (2010) The CTM4XAS program

for EELS and XAS spectral shape analysis of transition

metal L edges. Micron 41:687–694

[40] Delgado-Jaime MU, Zhang K, Vura-Weis J, de Groot FMF

(2016) CTM4DOC: electronic structure analysis from X-ray

spectroscopy. J Synchrotron Rad 23:1264–1271

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

J Mater Sci (2021) 56:7286–7297

[41] Bagus PS, Illas F, Pacchioni G, Parmigiani F (1999)

Mechanisms responsible for chemical shifts of core-level

binding energies and their relationship to chemical bonding.

J Electron Spectrosc Relat Phenom 100:215–236

[42] Kalinin SV, Spaldin NA (2013) Functional ion defects in

transition metal oxides. Science 341:858–859

[43] Aschauer U, Pfenninger R, Selbach SM, Grande T, Spaldin

NA (2013) Strain-controlled oxygen vacancy formation and

ordering in CaMnO3. Phys Rev B 88:054111

7297

[44] Chandrasena RU, Yang W, Lei Q, Delgado-Jaime MU,

Wijesekara KD, Golalikhani M, Davidson BA, Arenholz E,

Kobayashi K, Kobata M, de Groot FMF, Aschauer U,

Spaldin NA, Xi X, Gray AX (2017) Strain-engineered

oxygen vacancies in CaMnO3 thin films. Nano Lett

17:794–799

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る