リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Automated measurement of fluorescence signals reveals a significant increase of the graft-derived neurite extension in neonates compared to aged rats」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Automated measurement of fluorescence signals reveals a significant increase of the graft-derived neurite extension in neonates compared to aged rats

Grinand, Luc Takahashi, Jun 京都大学 DOI:10.1016/j.reth.2022.01.002

2022.03

概要

[Background] --Neural tissue grafting is an acceptable form of cell therapy for brain injury and diseases. However, methods that can evaluate the graft integration and measure axonal extensions in a 3D environment are limited in scale, inconvenient, and operator intensive. [Method] --We stained grafts with a fluorescent antibody and then quantified the amount of fluorescence through the entire brain. To achieve this, we created an automated computer program designed to sort out authentic staining from background noise without any user input, enabling the analysis of thousands of images. [Results] --Our program could compensate for variations in the background brightness between images in all animals. Using this program, we show that human induced pluripotent stem cell (iPSC)-derived dopaminergic (DA) progenitor cells integrate better into the striatum of neonates than older rats. [Conclusion] --Our program can quantify quickly and conveniently the integration of neural grafts in a 3D environment without depending on a blinded human operator. We expect this method to be a useful tool to assess the efficiency of graft-enhancing treatments for neurodegenerative diseases or other neural reconstruction attempts.

この論文で使われている画像

参考文献

[1] Cardoso T, Adler AF, Mattsson B, Hoban DB, Nolbrant S, Wahlestedt JN, et al.

Target-specific forebrain projections and appropriate synaptic inputs of hESCderived dopamine neurons grafted to the midbrain of parkinsonian rats.

J Comp Neurol 2018;526:2133e46. https://doi.org/10.1002/cne.24500.

[2] Collier TJ, O'Malley J, Rademacher DJ, Stancati JA, Sisson KA, Sortwell CE, et al.

Interrogating the aged striatum: robust survival of grafted dopamine neurons

in aging rats produces inferior behavioral recovery and evidence of impaired

integration. Neurobiol Dis 2015;77:191e203. https://doi.org/10.1016/

j.nbd.2015.03.005.

[3] Collier TJ, Sortwell CE, Daley BF. Diminished viability, growth, and behavioral

efficacy of fetal dopamine neuron grafts in aging rats with long-term dopamine depletion: an argument for neurotrophic supplementation. J Neurosci

1999;19:5563e73. https://doi.org/10.1523/jneurosci.19-13-05563.1999.

[4] Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, et al. Isolation of

human induced pluripotent stem cell-derived dopaminergic progenitors by

cell sorting for successful transplantation. Stem Cell Reports 2014;2:337e50.

https://doi.org/10.1016/j.stemcr.2014.01.013.

[5] Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and

potency to fetal neurons when grafted in a rat model of Parkinson's disease.

Cell Stem Cell 2014;15:653e65. https://doi.org/10.1016/j.stem.2014.09.017.

[6] Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, et al. Differentiated

Parkinson patient-derived induced pluripotent stem cells grow in the

adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc

Natl Acad Sci U S A 2010;107:15921e6. https://doi.org/10.1073/pnas.

1010209107.

Declaration of competing interest

The authors declare that no conflict of interest exists.

Acknowledgments

We thank Dr. Peter Karagiannis for critically reading the

manuscript. This study was supported by a grant from the Network

Program for Realization of Regenerative Medicine from the Japan

Agency for Medical Research and Development (AMED).

Appendix A. Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.reth.2022.01.002.

105

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

L. Grinand and J. Takahashi

Regenerative Therapy 19 (2022) 97e106

parkinsonian rat model of Parkinson's disease. Cell Transplant 2017;26:

1572e81. https://doi.org/10.1177/0963689717721202.

[12] Rhee YH, Ko JY, Chang MY, Yi SH, Kim D, Kim CH, et al. Protein-based human

iPS cells efficiently generate functional dopamine neurons and can treat a rat

model of Parkinson disease. J Clin Invest 2011;121:2326e35. https://doi.org/

10.1172/JCI45794.

€mberg I, Bygdeman M, Goldstein M, Seiger Å, Olson L. Human fetal sub[13] Stro

stantia nigra grafted to the dopamine-denervated striatum of immunosuppressed rats: evidence for functional reinnervation. Neurosci Lett 1986;71:

271e6. https://doi.org/10.1016/0304-3940(86)90632-4.

[14] Torikoshi S, Morizane A, Shimogawa T, Samata B, Miyamoto S, Takahashi J.

Exercise promotes neurite extensions from grafted dopaminergic neurons

in the direction of the dorsolateral striatum in Parkinson's disease model

rats. J Parkinsons Dis 2020;10:511e21. https://doi.org/10.3233/JPD191755.

[7] Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, et al. Human iPS

cell-derived dopaminergic neurons function in a primate Parkinson's disease

model. Nature 2017;548:592e6. https://doi.org/10.1038/nature23664.

[8] Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons

derived from human ES cells efficiently engraft in animal models of Parkinson's

disease. Nature 2011;480:547e51. https://doi.org/10.1038/nature10648.

[9] Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, et al. A novel

efficient feeder-Free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 2014;4:1e7. https://doi.org/10.1038/srep03594.

[10] Pang Z, barash E, Santamaria-Pang A, Sevinsky C, Li Q, Ginty F. Autofluorescence removal using a customized filter set. Microsc Res Tech

2013;76(10):1007e15. https://doi.org/10.1002/jemt.22261.

[11] Perez-Bouza A, Di Santo S, Seiler S, Meyer M, Andereggen L, Huber A, et al.

Simultaneous transplantation of fetal ventral mesencephalic tissue and

encapsulated genetically modified cells releasing GDNF in a hemi-

106

...

参考文献をもっと見る