リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Photocatalytic Activation of Elemental Sulfur Enables a Chemoselective Three-Component Thioesterification」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Photocatalytic Activation of Elemental Sulfur Enables a Chemoselective Three-Component Thioesterification

Murakami, Sho Nanjo, Takeshi Takemoto, Yoshiji 京都大学 DOI:10.1021/acs.orglett.1c02904

2021.10

概要

A mild and chemoselective three-component thioesterification using olefins, α-ketoacids, and elemental sulfur has been developed. The photocatalytic activation of elemental sulfur, a cheap and abundant sulfur source, enables the rapid installation of a sulfur atom into molecules, reactions that ordinarily would require the use of reactive and malodorous sulfur-containing compounds such as thiols and thioacids. This novel reaction is characterized by high yields and a broad substrate scope, which enables the introduction of thioester moieties into complex molecules including a steroid, a peptide, and a nonprotected glycoside. Mechanistic studies indicated that the success of this transformation depends on the multiple roles played by the elemental sulfur, including those of a sulfurizing agent, a terminal oxidant, and a HAT mediator.

この論文で使われている画像

参考文献

(1) For a review on the utility of sulfur-containing compounds, see: Barce

Ferro, C. T.; dos Santos, B. F.; da Silva, C. D. G.; Brand, G.; da Silva, B.

A. L.; de Campos Domingues, N. L. Review of the Syntheses and Activities

of Some Sulfur-Containing Drugs. Current Organic Synthesis, 2020, 17,

192-210.

(2) For reviews on thioesters, see: (a) Franke, J.; Hertweck, C. Biomimetic

Thioesters as Probes for Enzymatic Assembly Lines: Synthesis, Applications, and Challenges. Cell Chem. Biol. 2016, 23, 1179-1192. (b) Shokal,

U.; Eleftherianos, I. Evolution and Function of Thioester-Containing Proteins and the Complement System in the Innate Immune Response. Front.

Immunol. 2017, 8, 759. (c) Agouridas, V.; Mahdi, O. E.; Diemer, V.; Cargoët, M.; Monbaliu, J.-C. M.; Melnyk, O. Native Chemical Ligation and

Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem.

Rev. 2019, 119, 7328-7443.

(3) (a) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Synthesis

of Proteins by Native Chemical Ligation. Science 1994, 266, 776-779. (b)

Johnson, E. C. B.; Kent, S. B. H. Insights into the Mechanism and Catalysis

of the Native Chemical Ligation Reaction. J. Am. Chem. Soc. 2006, 128,

6640-6646.

(4) For reviews on the synthesis of thioesters, see: (a) Kazemi, M.; Shiri, L.

Thioesters Synthesis: Recent Adventures in the Esterification of Thiols. J.

Sulfur Chem. 2015, 36, 613-623. (b) Hirschbeck, V.; Gehrtz, P. H.;

Fleischer, I.; Metal-Catalyzed Synthesis and Use of Thioesters: Recent Developments. Chem.-Eur. J. 2018, 24, 7092-7107.

(5) For selected reports on oxidative acylation reactions using aldehydes,

see: (a) Takagi, M.; Goto, S.; Matsuda, T. Photo-reaction of Lipoic Acid

and Related Organic Disulphides: Reductive Acylation with Aldehydes. J.

Chem. Soc. Chem. Commun. 1976, 92-93. (b) Nambu, H.; Hata, K.; Matsugi,

M.; Kita, Y. The Direct Synthesis of Thioesters Using an Intermolecular

Radical Reaction of Aldehydes with Dipentafluorophenyl Disulfide in Water. Chem. Commun. 2002, 1082-1083. (c) Uno, T.; Inokuma, T.; Takemoto,

Y. NHC-catalyzed Thioesterification of Aldehydes by External Redox Activation. Chem. Commun. 2012, 48, 1901-1903. (d) Yi, C.-L.; Huang, Y.T.; Lee, C.-F. Synthesis of Thioesters through Copper-catalyzed Coupling

of Aldehydes with Thiols in water. Green Chem. 2013, 15, 2476-2484.

(6) (a) Rong, G.; Mao, J.; Liu, D.; Yan, H.; Zheng, Y.; Chen, J. Formation

of C(sp2)−S Bonds through Decarboxylation of -Oxocarboxylic Acids

with Disulfides or Thiophenols. RSC Adv. 2015, 5, 26461–26464. (b) Yan,

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

K.; Yang, D.; Wei, W.; Zhao, J.; Shuai, Y.; Tian, L.; Wang, H. Catalystfree Direct Decarboxylative Coupling of α-Keto Acids with Thiols: A Facile Access to Thioesters. Org. Biomol. Chem. 2015, 13, 7323-7330.

(7) For selected reports on the carbonylative coupling of thiols, see: (a)

Reppe, W. Carbonylierung I. Über die Umsetzung von Acetylen mit

Kohlenoxyd und Verbindungen mit Reaktionsfähigen Wasserstoffatomen

Synthesen ,-Ungesättigter Carbonsäuren und Ihrer Derivate. Justus Liebigs Ann. Chem. 1953, 582, 1-37. (b) Ogawa, A.; Kawakami, J.; Mihara,

M.; Ikeda, T.; Sonoda, N.; Hirao, T. Highly Regioselective Hydrothiocarboxylation of Acetylenes with Carbon Monoxide and Thiols Catalyzed by

Pt(PPh3)4. J. Am. Chem. Soc. 1997, 119, 12380-12381. (c) Xiao, W.-J.;

Vasapollo, G.; Alper, H. Highly Regioselective Palladium-catalyzed Thiocarbonylation of Allenes with Thiols and Carbon Monoxide. J. Org. Chem.

1998, 63, 2609-2612. (d) Cao, H.; McNamee, L.; Alper, H. Palladium-catalyzed Thiocarbonylation of Iodoarenes with Thiols in Phosphonium Salt

Ionic Liquids. J. Org. Chem. 2008, 73, 3530-3534. (e) Hirschbeck, V.;

Gehrtz, P. H.; Fleischer, I. Regioselective Thiocarbonylation of Vinyl

Arenes. J. Am. Chem. Soc. 2016, 138, 16794-16799.

(8) For selected reports on thiol-ene reactions using thioacids, see: (a)

Brown, R.; Jones, W. E.; Pinder, A. R. The Addition of Thiolacetic Acid to

Unsaturated Compounds. J. Chem. Soc. 1951, 2123-2125. (b) Kanagasabapathy, S.; Sudalai, A.; Benicewicz, B. C. Montmorillonite K 10-catalyzed

Regioselective Addition of Thiols and Thiobenzoic Acids onto Olefins: An

Efficient Synthesis of Dithiocarboxylic Esters. Tetrahedron Letters. 2001,

42 3791-3794. (c) Weïwer, M.; Duñach, E. Indium(III)-catalysed Highly

Regioselective Addition of Thiolacetic Acid to Non-activated Olefins. Tetrahedron Lett. 2006, 47, 287-289. (d) Tyson, E. L.; Ament, M. S.; Yoon, T.

P. Transition Metal Photoredox Catalysis of Radical Thiol-Ene Reactions.

J. Org. Chem. 2013, 78, 2046-2050. (e) Levin, V. V.; Dilman, A. D. Visible-Light-Mediated Organocatalyzed Thiol-ene Reaction Initiated by a Proton-Coupled Electron Transfer. J. Org. Chem. 2019, 84, 8337-8343.

(9) Zheng, T.-C.; Burkart, M.; Richardson, D. E. A General and Mild Synthesis of Thioesters and Thiols from Halides. Tetrahedron Lett. 1999, 40,

603-606.

(10) For selected reports on other syntheses of thioesters, see: (a) Ali, W.;

Guin, S.; Rout, S. K.; Gogoi, A.; Patel, B. K. Thioesterification of Alkylbenzenes with Thiols via Copper-Catalyzed Cross-dehydrogenative

Coupling without a Directing Group. Adv. Synth. Catal. 2014, 356, 30993105. (b) Bogonda, G.; Patil, D. V.; Kim, H. Y.; Oh, K. Visible-light-promoted Thiyl Radical Generation from Sodium Sulfinates: A Radical-radical

Coupling to Thioesters. Org. Lett. 2019, 21, 3774-3779. (c) Jiang, X.; Wang,

G.; Zheng, Z.; Yu, X.; Hong, Y.; Xia, H.; Yu, C. Autocatalytic Synthesis of

Thioesters via Thiocarbonylation of gem-Difluoroalkenes. Org. Lett. 2020,

22, 9762-9766. (d) Luo, J.; Rauch, M.; Avram, L.; Diskin-Posner, Y.;

Shmul, G.; Ben-David, Y.; Milstein, D. Formation of Thioesters by Dehydrogenative Coupling of Thiols and Alcohols with H2 Evolution. Nature

Catal. 2020, 3, 887-892.

(11) For a recent review on organic reactions involving elemental sulfur,

see: (a) Nguyen, T. B. Recent Advances in Organic Reactions Involving

Elemental Sulfur. Adv. Synth. Catal. 2017, 359, 1066-1130. (b) Nguyen, T.

B. Recent Advances in the Synthesis of Heterocycles via Reactions Involving Elemental Sulfur. Adv. Synth. Catal. 2020, 362, 3448-3484. (c) Liu, S.;

Deng, G.-J.; Huang, H. Recent Advances in Sulfur-Containing Heterocycle

Formation via Direct C–H Sulfuration with Elemental Sulfur. Synlett 2021,

32, 142-158.

(12) For recent reports on organic reactions involving elemental sulfur, see:

(a) Shibahara, F.; Sugiura, R.; Murai, T. Direct Thionation and Selenation

of Amides Using Elemental Sulfur and Selenium and Hydrochlorosilanes

in the Presence of Amines. Org. Lett. 2009, 11, 3064-3067. (b) Zhang, G.;

Yi, H.; Chen, H.; Bian, C.; Liu, C.; Lei, A. Trisulfur Radical Anion as the

Key Intermediate for the Synthesis of Thiophene via the Interaction between Elemental Sulfur and NaOtBu. Org. Lett. 2014, 16, 6156-6159. (c)

Arisawa, M.; Ichikawa, T.; Yamaguchi, M. Synthesis of Thiiranes by Rhodium-catalyzed Sulfur Addition Reaction to Reactive Alkenes. Chem. Commun. 2015, 51, 8821-8824. (d) Saito, M.; Murakami, S.; Nanjo, T.; Kobayashi, Y.; Takemoto, Y. Mild and Chemoselective Thioacylation of Amines

Enabled by the Nucleophilic Activation of Elemental Sulfur. J. Am. Chem.

Soc. 2020, 142, 8130-8135.

(13) (a) Savateev, A.; Kurpil, B.; Mishchenko, A.; Zhang, G.; Antonietti,

M. A “Waiting” Carbon Nitride Radical Anion: A Charge Storage Material and Key Intermediate in Direct C−H Thiolation of Methylarenes Using Elemental Sulfur as the “S”-source. Chem. Sci. 2018, 9, 3584-3591. (b)

Kurpil, B.; Kumru, B.; Heil, T.; Antonietti, M.; Savateev, A. Carbon Nitride

Creates Thioamides in High Yields by the Photocatalytic Kindler Reaction.

Green Chem. 2018, 20, 838-842.

(14) For selected reviews on decarboxylative transformations of -ketoacids, see: (a) Guo, L.-N.; Wang, H.; Duan, X.-H. Recent Advances in

Catalytic Decarboxylative Acylation Reactions via a Radical Process. Org.

Biomol. Chem. 2016, 14, 7380-7391. (b) Bode, J. W. Chemical Protein Synthesis with the α-Ketoacid-Hydroxylamine Ligation. Acc. Chem. Res. 2017,

50, 2104-2115. (c) Schwarz, J.; König, B. Decarboxylative Reactions with

and without Light – a Comparison. Green Chem. 2018, 20, 323-361.

(15) For selected reports on acylation reactions using -ketoacids, see: (a)

Bode, J. W.; Fox, R. M.; Baucom, K. D. Chemoselective Amide Ligations

by Decarboxylative Condensations of N-Alkylhydroxylamines and -Ketoacids. Angew. Chem., Int. Ed. 2006, 45, 1248-1252. (b) Carrillo, N.; Davalos, E. A.; Russak, J. A.; Bode, J. W. Iterative, Aqueous Synthesis of 3Oligopeptides without Coupling Reagents. J. Am. Chem. Soc. 2006, 128,

1452-1453. (c) Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei,

A. Visible-Light-Mediated Decarboxylative/Oxidative Amidation of Keto Acids with Amines under Mild Reaction Conditions Using O2. Angew.

Chem., Int. Ed. 2014, 53, 502-506. (d) Xu, W.-T.; Huang, B.; Dai, J.-J.; Xu,

J.; Xu, H.-J. Catalyst-Free Singlet Oxygen-Promoted Decarboxylative

Amidation of -Keto Acids with Free Amines. Org. Lett. 2016, 18, 31143117. (e) Nanjo, T.; Kato, N.; Takemoto, Y.; Oxidative Decarboxylation

Enables Chemoselective, Racemization-Free Esterification: Coupling of Ketoacids and Alcohols Mediated by Hypervalent Iodine(III). Org. Lett.

2018, 20, 5766-5769. (f) Nanjo, T.; Kato, N.; Zhang, X.; Takemoto, Y. A

Hydroperoxide-mediated Decarboxylation of α-Ketoacids Enables the

Chemoselective Acylation of Amines. Chem.-Eur. J. 2019, 25, 1550415507.

(16) The reaction mixtures were heterogeneous at the beginning of the reaction due to the low solubility of S8 in MeCN; however, after the reaction

a clear solution was obtained.

(17) Hanss, D.; Freys, J. C.; Bernardinelli, G.; Wenger, O. S. Cyclometalated Iridium(III) Complexes as Photosensitizers for Long-Range Electron

Transfer: Occurrence of a Coulomb Barrier. Eur. J. Inorg. Chem. 2009,

4850-4859.

(18) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.,

Jr.; Malliaras, G. G.; Bernhard, S. Single-Layer Electroluminescent Devices

and Photoinduced Hydrogen Production from an Ionic Iridium (III) Complex. Chem. Mater. 2005, 17, 5712-5719.

(19) Control experiments in the absence of photocatalyst, light, or 2,4,6collidine confirmed that the photoexcited iridium catalyst plays a crucial

role in promoting this reaction and that 2,4,6-collidine accelerates the SET

process by deprotonating the -ketoacid. For details, see the Supporting Information.

(20) On a 1 mmol scale, the reaction provided 90% yield after 24 hours

under optimal conditions; for details, see the Supporting Information.

(21) Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F.

Photochemistry and Photophysics of Coordination Compounds: Iridium.

Top. Curr. Chem. 2007, 281, 143-203.

(22) Dedeian, K.; Djurovich, P. I.; Garces, F. O.; Carlson, G.; Watts, R. J.

A New Synthetic Route to the Preparation of a Series of Strong Photoreducing Agents: fac-Tris-ortho-metalated Complexes of Iridium (III) with Substituted 2-Phenylpyridines. Inorg. Chem. 1991, 30, 1685-1687.

(23) Redox potentials were estimated using cyclic voltammetry (CV) in

MeCN with an Ag/Ag+ couple as a reference electrode. For details, see the

Supporting Information.

(24) The presence of radical intermediates was also supported by an experiment that involved hepta-1,6-diene, which afforded the 5-exo-cyclization

product; for details, see the Supporting Information.

(25) Partial deuterium incorporation was also observed at the benzylic position. This result might indicate that a reversible hydrogen atom abstraction

by a thiyl radical occurs in the reaction system.

(26) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Catalytic

Alkylation of Remote C–H Bonds Enabled by Proton-coupled Electron

Transfer. Nature 2016, 539, 268-271.

(27) (a) Tang, J.; Zhao, X. Synthesis of 2,5-Disubstituted Thiophenes via

Metal-free Sulfur Heterocyclization of 1,3-Diynes with Sodium Hydrosulfide. RSC Adv. 2012, 2, 5488-5490. (b) Zheng, Q.; Hua, R.; Jiang, J.; Zhang,

L. A General Approach to Arylated Furans, Pyrroles, and Thiophenes. Tetrahedron 2014, 70, 8252-8256. (c) Paixão, D. B.; Rampon, D. S.; Salles, H.

D.; Soares, E. G. O.; Bilheri, F. N.; Schneider, P. H. Trithiocarbonate Anion

as a Sulfur Source for the Synthesis of 2,5-Disubstituted Thiophenes and 2Substituted Benzo[b]thiophenes. J. Org. Chem. 2020, 85, 12922-12934.

(28) Cerda, M. M.; Hammers, M. D.; Earp, M. S.; Zakharov, L. N.; Pluth,

M. D. Applications of Synthetic Organic Tetrasulfides as H2S Donors. Org.

Lett. 2017, 19, 2314-2317.

...

参考文献をもっと見る