リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nitrogen reduction by the Fe sites of synthetic [Mo₃S₄Fe] cubes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nitrogen reduction by the Fe sites of synthetic [Mo₃S₄Fe] cubes

Ohki, Yasuhiro Munakata, Kenichiro Matsuoka, Yuto Hara, Ryota Kachi, Mami Uchida, Keisuke Tada, Mizuki Cramer, Roger E. Sameera, W. M. C. Takayama, Tsutomu Sakai, Yoichi Kuriyama, Shogo Nishibayashi, Yoshiaki Tanifuji, Kazuki 京都大学 DOI:10.1038/s41586-022-04848-1

2022.07.07

概要

Nitrogen (N₂) fixation by nature, which is a crucial process for the supply of bio-available forms of nitrogen, is performed by nitrogenase. This enzyme uses a unique transition-metal–sulfur–carbon cluster as its active-site co-factor ([(R-homocitrate)MoFe₇S₉C], FeMoco), and the sulfur-surrounded iron (Fe) atoms have been postulated to capture and reduce N₂ (refs.). Although there are a few examples of synthetic counterparts of the FeMoco, metal–sulfur cluster, which have shown binding of N₂ (refs.), the reduction of N₂ by any synthetic metal–sulfur cluster or by the extracted form of FeMoco has remained elusive, despite nearly 50 years of research. Here we show that the Fe atoms in our synthetic [Mo₃S₄Fe] cubes can capture a N₂ molecule and catalyse N₂ silylation to form N(SiMe₃)₃ under treatment with excess sodium and trimethylsilyl chloride. These results exemplify the catalytic silylation of N₂ by a synthetic metal–sulfur cluster and demonstrate the N₂-reduction capability of Fe atoms in a sulfur-rich environment, which is reminiscent of the ability of FeMoco to bind and activate N₂.

参考文献

1 Spatzal, T. et al. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940–940 (2011).

2 Lancaster, K. M. et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron- molybdenum cofactor. Science 334, 974–977 (2011).

3 Seefeldt, L. C. et al. Reduction of substrates by nitrogenases. Chem. Rev. 120, 5082–5106 (2020).

4 Spatzal, T., Perez, K. A., Einsle, O., Howard, J. B., Rees, D. C. Ligand binding to the FeMo-cofactor: Structures of CO-bound and reactivated nitrogenase. Science 345, 1620–1623 (2014).

5 Sippel, D. et al. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359, 1484–1489 (2018).

6 Kang, W., Lee, C. C., Jasniewski, A. J., Ribbe, M. W., Hu, Y. Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science 368, 1381–1385 (2020).

7 Mori, H., Seino, H., Hidai, M., Mizobe, Y. Isolation of a cubane-type metal sulfido cluster with a molecular nitrogen ligand. Angew. Chem. Int. Ed. 46, 5431–5434 (2007).

8 Ohki, Y. et al. N2 activation on a molybdenum–titanium–sulfur cluster. Nat. Commun. 9, 3200 (2018).

9 McSkimming, A. & Suess, D. L. M. Dinitrogen binding and activation at a molybdenum–iron–sulfur cluster. Nat. Chem. 13, 666–670 (2021).

10 Smith, B. E., Durrant, M. C., Fairhurst, S. A., Gormal, C. A., Grönberg, K. L. C., Henderson, R. A., Ibrahim, S. K., Le Gall, T., Pickett, C. J. Exploring the reactivity of the isolated iron-molybdenum cofactor of nitrogenase. Coord. Chem. Rev. 185-186, 669-687 (1999).

11 Ohki, Y. et al. Cubane-type [Mo3S4M] clusters with first-row groups 4–10 transition-metal halides supported by C5Me5 ligands on molybdenum. Chem. Eur. J. 24, 17138–17147 (2018).

12 Ohki, Y. et al. Synthesis of [Mo3S4] clusters from half-sandwich molybdenum(V) chlorides and their application as platforms for [Mo3S4Fe] cubes. Inorg. Chem. 58, 5230–5240 (2019).

13 Jasniewski, A. J., Lee, C. C., Ribbe, M. W., Hu, Y. Reactivity, mechanism, and assembly of the alternative nitrogenases. Chem. Rev. 120, 5107–5157 (2020).

14 Chalkley, M. J., Drover, M. W., Peters, J. C. Catalytic N2-to-NH3 (or -N2H4) conversion by well-defined molecular coordination complexes. Chem. Rev. 120, 5582–5636 (2020).

15 Tanabe, Y., Nishibayashi, Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild con. Chem. Soc. Rev. (2021). doi:10.1039/d0cs01341b

16 Lee, S. C., Holm, R. H. The clusters of nitrogenase: synthetic methodology in the construction of weak- field clusters. Chem. Rev. 104, 1135–1157 (2004).

17 Tanifuji, K., Ohki, Y. Metal-sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chem. Rev. 120, 5194–5251 (2020).

18 Hazari, N. Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Chem. Soc. Rev. 39, 4044-4056 (2010).

19 Čorić, I., Mercado, B. Q., Bill, E., Vinyard, D. J., Holland, P. L. Binding of dinitrogen to an iron–sulfur– carbon site. Nature 526, 96–99 (2015).

20 Anderson, J. S., Rittle, J., Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84-87 (2013).

21 Yuki, M. et al. Iron-catalysed transformation of molecular dinitrogen into silylamine under ambient conditions. Nat. Commun. 3, 1254 (2012).

22 Ung, G., Peters, J. C. Low-temperature N2 binding to two-coordinate L2Fe0 enables reductive trapping of L2FeN2- and NH3 generation. Angew. Chem. Int. Ed. 54, 532–535 (2015).

23 Araake, R., Sakadani, K., Tada, M., Sakai, Y., Ohki, Y. [Fe4] and [Fe6] hydride clusters supported by phosphines: synthesis, characterization, and application in N2 reduction. J. Am. Chem. Soc. 139, 5596– 5606 (2017).

24 Piascik, A. D., Li, R., Wilkinson, H. J., Green, J. C. & Ashley, A. E. Fe-catalyzed conversion of N2 to N(SiMe3)3 via an Fe-hydrazido resting state. J. Am. Chem. Soc. 140, 10691–10694 (2018).

25 Liang, Q. et al. [2Fe–2S] cluster supported by redox-active o-phenylenediamide ligands and its application toward dinitrogen reduction. Inorg. Chem. 60, 13811–13820 (2021).

26 Tanaka, H. et al. Molybdenum-catalyzed transformation of molecular dinitrogen into silylamine: Experimental and DFT study on the remarkable role of ferrocenyldiphosphine ligands. J. Am. Chem. Soc. 133, 3498–3506 (2011).

27 Li, M., Gupta, S. K., Dechert, S., Demeshko, S., Meyer, F. Merging pincer motifs and potential metal- metal cooperativity in cobalt dinitrogen chemistry: efficient catalytic silylation of N2 to N(SiMe3)3. Angew. Chem. Int. Ed. 60, 14480-14487 (2021).

28 Siedschlag, R. B. et al. Catalytic silylation of dinitrogen with a dicobalt complex. J. Am. Chem. Soc. 137, 4638–4641 (2015).

29 Piascik, A. D. et al. Cationic silyldiazenido complexes of the Fe(diphosphine)2(N2) platform: structural and electronic models for an elusive first intermediate in N2 fixation. Chem. Commun. 53, 7657-7660 (2017).

30 Lee, Y., Mankad, N. P., Peters, J. C. Triggering N2 uptake via redox-induced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron. Nat. Chem. 2, 558-565 (2010).

31 Rao, P. V., Holm, R. H. Synthetic analogues of the active sites of iron−sulfur proteins. Chem. Rev. 104, 527–560 (2004).

32 Neese, F. Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory. Inorg. Chim. Acta 337, 181–192 (2002).

33 Dorantes, M. J., Moore, J. T., Bill, E., Mienert, B., Lu, C. C. Bimetallic iron-tin catalyst for N2 to NH3 and a silyldiazenido model intermediate. Chem. Commun. 56, 11030–11033 (2020).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る