リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on various conditions on Cohen-Macaulay rings and modules, with applications to the representation theory of maximal Cohen-Macaulay modules」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on various conditions on Cohen-Macaulay rings and modules, with applications to the representation theory of maximal Cohen-Macaulay modules

Kobayashi, Toshinori 小林, 稔周 名古屋大学

2020.04.02

概要

Cohen-Macaulay環の表現論とはCohen-Macaulay環上の加群、特に極大Cohen-Macaulay加群を分析することにより、元の環の構造を理解しようとする理論である。その顕著な成果の一つにAuslander, Esnault, Herzog, Buchweitz-Greuel-Schreyer, Knörrerらによる2次元あるいはGorensteinであるような有限Cohen-Macaulay表現型をもつCohen-Macaulay局所環の分類がある。これらの環はその上の極大Cohen-Macaulay加群の分類を与えることができるという特異な性質をもつ。しかしながら、有限Cohen-Macaulay表現型でない一般の環において、その上の極大Cohen Macaulay加群の分類は非常に困難な問題である。そこで、考える加群はさらに特別な条件を満たすものとし、それらの分析によって元の環の構造理解を達成しようとする試みが多数行われている。本論文の目的はこのような種々の特別な極大Cohen-Macaulay加群の解析を発展させることである。本論文は次の6つの部分(1)-(6)からなる。

(1)加群のテンソル積がいつ極大Cohen-Macaulay加群かという問いに取り組むためにHunekeとWiegandが与えたのがHuneke-Wiegand予想である。本論文ではAuslander-Reiten列の中間項が直既約因子を2つ以上持つ場合に、その加群に対しHuneke-Wiegand予想が成り立つことを証明する。これはR.Royによる次数付完全交叉環に対する同様の結果をGorenstein局所環に対する結果に拡張するものである。

(2)Huneke-Wiegand予想への応用を企図して、すべてのイデアルがトレースイデアルと同型であるような環を特徴づけよ、という問いがLindoとPandeにより提示された。本論文では局所環に対して上の問いに完全な回答を与えた。非局所環に対しても、すべての極大イデアルの高度が2以上または0という仮定の下で上記問いへの完全回答を与えた。

(3)Punctured spectrumで局所自由な極大Cohen-Macaulay加群に注目し、その諸性質を調べた。特に上記性質を満たす直既約加群の同型類の個数が有限となる環を特徴づける予想を立て、いくつかの部分的回答を試みた。中でも1次元Gorenstein局所環であって上の条件を満たすものが丁度可算Cohen-Macaulay表現型をもつ超曲面となることを示し、先の予想の根拠を与えた。またこの結果はAraya-Iima-Takahashiの結果の逆が1次元において成り立つことを示すものである。

(4)極大Cohen-Macaulay加群のシジシーに着目し、これらの加群全体のなす圏の構造解析を試みた。具体的には、まず考える環を1次元のCohen-Macaulay局所環とし、その極大イデアルの自己準同型環を用いた。これはBassによる1次元Gorenstein環上の考察の類推であり、その拡張として1次元概Gorenstein局所環の特徴づけを)極大Cohen-Macaulay加群のシジシーにより与えることができた。次に考える環を1次元とは限らず、代わりに極小重複度をもつと仮定し、極大Cohen-Macaulay加群のシジシー全体とUlrich加群全体との比較を行った。一般には片側の包含関係があることを示し、その等号成立に対する必要十分条件を与えた。これは1次元における先の結果のある種の一般化を与える。同様の等号はNakajima-Yoshidaにより曲面巡回商特異点に対し考察されていたが、本論文は別手法をとり、特に非巡回商特異点に対する結果を与えている。

(5)Bassによる1次元Gorenstein環上の考察において、Gorenstein局所環の極大イデアルの自己準同型環は重要な道具である。本論文では逆にどのような環がこのような自己準同型環として現れるかという問いを考察した。実際に弱い仮定の下で、上記の環のクラスは極大イデアルが自己正準双対であるような環のクラスに一致することを示した。応用として、1次元の場合に概Gorenstein局所環と概極小重複度をもつGorenstein局所環との間にある種の対応があることを確かめた。

(6)Burchイデアル、およびBurch環というイデアルまたは環のクラスを導入しその基本的性質を調べた。まずBurchイデアルとはイデアルに関するある種の単純な不等号の成立により定義されるイデアルであるが、そのクラスは弱い条件下で整閉イデアルやm-fullイデアルなど多くのイデアルを含む。その上Burchによって、これらイデアルに対しTor群の非消滅性が示されるなど著しい性質をもつ。このBurchイデアルを用いて定義されるのがBurch環である。Burch環を導入した大きな動機の一つは部分圏分類への応用にある。部分圏分類とは与えられた圏のある種の部分圏のなす集合と別のよく知られた集合との間に全単射を与えるものである。一般に圏の対象を分類することは困難である。より荒い部分圏の分類を行うことは適用可能範囲を広げることが期待できる。本論文では実際にBurch環の諸性質を調べることで、Takahashi, Nasseh-Takahashiらにより開発された部分圏分類の技法をBurch環に対しても適用できることを示した。他方、超曲面や極小重複度をもつCohen Macaulay局所環、線形自由分解をもつ斉次環などがBurch環であることを確かめ、局所環のクラスのなす階層においてBurch環の位置づけを行った。

参考文献

[1] H. Ananthnarayan, The Gorenstein colength of an Artinian local ring. J. Algebra 320 (2008), no. 9, 3438-–3446.

[2] H. Ananthnarayan; L.L. Avramov; W.F. Moore, Connected sums of Gorenstein local rings. J. Reine Angew. Math. 667 (2012), 149—176.

[3] T. Araya; K.-i. Iima; R. Takahashi, On the structure of Cohen–Macaulay modules over hypersurfaces of countable Cohen–Macaulay representation type, J. Algebra 361 (2012), 213–224.

[4] S. Ariki; R. Kase; K. Miyamoto, On components of stable Auslander–Reiten quivers that contain Heller lattices: the case of truncated polynomial rings, Nagoya Math. J. 228 (2017), 72–113.

[5] M. Auslander, Modules over unramified regular local rings, Illinois J. Math. 5, (1961) 631–647.

[6] M. Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), no. 2, 511–531.

[7] M. Auslander; M. Bridger, Stable module theory, Mem. Amer. Math. Soc. No. 94, American Mathematical Society, Providence, R.I., 1969.

[8] M. Auslander; R.-O. Buchweitz, The homological theory of maximal Cohen–Macaulay approximations, Colloque en l’honneur de Pierre Samuel (Orsay, 1987), M´em. Soc. Math. France (N.S.) 38 (1989), 5–37.

[9] M. Auslander; S. Ding; Ø. Solberg, Liftings and weak liftings of modules, J. Algebra 156 (1993), 273–317.

[10] L. L. Avramov, Infinite free resolutions, Six lectures on commutative algebra, 1–118, Mod. Birkh¨auser Class., Birkh¨auser Verlag, Basel, 2010.

[11] L. L. Avramov, A cohomological study of local rings of embedding codepth 3, J. Pure Appl. Algebra 216 (2012), no. 11, 2489–2506.

[12] L. L. Avramov; S. B. Iyengar, Constructing modules with prescribed cohomological support, Illinois J. Math. 51 (2007), no. 1, 1–20.

[13] L. L. Avramov; S. Iyengar; L. S¸ega, Free resolutions over short local rings, Proc. London Math. Soc. 78, (2008) 459–476.

[14] H. Bass, On the ubiquity of Gorenstein rings, Math. Zeitschrift 82 (1963), 8–28.

[15] V. Barucci and R. Froberg ¨ , One-dimensional almost Gorenstein rings, J. Algebra, 188 (1997), no. 2, 418–442.

[16] G. M. Bergman, Minimal faithful modules over Artinian rings. Publ. Mat. 59 (2015), no. 2, 271-–300.

[17] J. P. Brennan; J. Herzog; B. Ulrich, Maximally generated Cohen–Macaulay modules, Math. Scand. 61 (1987), no. 2, 181–203.

[18] J. Brennan; W. Vasconcelos, On the structure of closed ideals, Math. Scand. 88 (2001), no. 1, 3–16.

[19] W. Bruns; J. Herzog, Cohen–Macaulay rings, revised edition, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1998.

[20] R.-O. Buchweitz, Maximal Cohen–Macaulay modules and Tate-cohomology over Gorenstein rings, unpublished paper (1986), http://hdl.handle.net/1807/16682.

[21] R.-O. Buchweitz; G.-M. Greuel; F.-O. Schreyer, Cohen–Macaulay modules on hypersurface singularities, II, Invent. Math. 88 (1987), no. 1, 165–182.

[22] I. Burban; Y. Drozd, Maximal Cohen–Macaulay modules over non-isolated surface singularities and matrix problems, Mem. Amer. Math. Soc. 248 (1178) (2017).

[23] L. Burch, On ideals of finite homological dimension in local rings, Proc. Cambridge Philos. Soc., 64 (1968), 941–948.

[24] L. Burch, A note on the homology of ideals generated by three elements in local rings, Proc. Cambridge Philos. Soc., 64 (1968), 949–952.

[25] L. Burch, Codimension and analytic spread, Proc. Cambridge Philos. Soc., 72 (1972), 369–373.

[26] M. Casanellas; R. Hartshorne, ACM bundles on cubic surfaces, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3, 709–731.

[27] O. Celikbas, Vanishing of Tor over complete intersections, J. Commut. Algebra 3 (2011),169–206.

[28] O. Celikbas; S. Goto; R. Takahashi; N. Taniguchi, On the ideal case of a conjecture of Huneke and Wiegand, to appear in Proc. Edinb. Math. Soc. (2).

[29] O. Celikbas; K. Iima; A. Sadeghi; R. Takahashi, On the ideal case of a conjecture of Auslander and Reiten,Bull. Sci. Math. 142 (2018), 94–107.

[30] O. Celikbas; R. Takahashi, Auslander–Reiten conjecture and Auslander–Reiten duality, J. Algebra 382 (2013), 100–114.

[31] S. Choi, Exponential growth of Betti numbers, J.Algebra 152 (1992), 20–29.

[32] L. W. Christensen, Gorenstein dimensions, Lecture Notes in Mathematics, 1747, Springer-Verlag, Berlin, 2000.

[33] A. Conca; E. DeNegri; M. E. Rossi, Integrally closed and componentwise linear ideals, Math. Z. 265 (2010), 715–734.

[34] A. Corso; S. Goto; C. Huneke; C. Polini; B. Ulrich, Iterated socles and integral dependence in regular rings, Trans. Amer. Math. Soc. 370 (2018), no. 1, 53–72.

[35] A. Corso; C. Huneke; W. V. Vasconcelos, On the integral closure of ideals, Manuscripta Math. 95 (1998), no. 3, 331–347.

[36] A. Corso; C. Huneke; D. Katz; W. V. Vasconcelos, Integral closure of ideals and annihilators of homology, Lect. Notes Pure Appl. Math. 204 (2006), 33–48.

[37] L. Costa; R. M. Miro-Roig ´ , GL(V )-invariant Ulrich bundles on Grassmannians, Math. Ann. 361 (2015), no. 1-2, 443–457.

[38] D. T. Cuong, Problem Session, International Workshop on Commutative Algebra, Thai Nguyen University, January 4, 2017.

[39] C. W. Curtis;I. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 1, Wiley-Interscience, New York, 1981.

[40] H. Dao; O. Iyama; R. Takahashi; C. Vial, Non-commutative resolutions and Grothendieck groups, J. Noncommut. Geom. 9 (2015), no. 1, 21–34.

[41] H. Dao; T. Kobayashi; R. Takahashi, Burch ideals and Burch rings, preprint, arXiv:1905.02310.

[42] H. Dao; J. Schweig, The type defect of a simplicial complex, Journal of Combinatorial Theory, Series A 163 (2019), 195–210.

[43] H. Dao; R. Takahashi, The dimension of a subcategory of modules, Forum Math. Sigma 3 (2015), e19, 31 pp.

[44] A. De Stefani, Products of ideals may not be Golod, J. Pure Appl. Algebra, 220 (2016), no. 6, 2289–2306.

[45] M. T. Dibaei; M. Rahimi, Rings with canonical reduction. arXiv:1712.00755.

[46] Y. Drozd, Representations of commutative algebras, Funct. Analysis and its Appl., 6 (1972), English Translation, 286–288.

[47] Y. Drozd; V. V. Kiricenko ˇ The quasi-Bass orders, (Russian) Izv. Akad.Nauk SSSR Ser. Mat. 36 (1972), 328–370.

[48] Y. Drozd; A. Ro˘ıter, Commutative rings with a finite number of indecomposable integral representations, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 783–798.

[49] S. P. Dutta, Syzygies and homological conjectures, Commutative algebra (Berkeley, CA, 1987), 139–156, Math. Sci. Res. Inst. Publ., 15, Springer, New York, 1989.

[50] D. Eisenbud, Commutative algebra, With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995.

[51] E. G. Evans; P. Griffith, Syzygies, London Mathematical Society Lecture Note Series, 106,

[52] J. Elias; M. Silva Takatuji, On Teter rings. Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 1, 125—139.

[53] H. Esnault, Reflexive modules on quotient surface singularities, J. Reine Angew. Math. 362 (1985), 63–71.

[54] R. M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Springer-Verlag, New York-Heidelberg, 1973.

[55] P. Gabriel, Des cat´egories ab´eliennes, Bull. Soc. Math. France 90 (1962), 323–448.

[56] P. Gabriel, Unzerlegbare Darstellungen, I, Manuscripta math. 6 (1972), 71–103.

[57] L. Ghezzi; S.Goto; J. Hong; W. V. Vasconcelos, Invariants of Cohen–Macaulay rings associated to their canonical ideals. Journal of Algebra, 489, 506–528.

[58] S. Goto; R. Isobe; S. Kumashiro, Correspondence between trace ideals and birational extensions with application to the analysis of the Gorenstein property of rings, to appear in J. Pure Appl. Algebra.

[59] P. A. Garc´ıa-Sanchez; M. J. Leamer ´ , Huneke-Wiegand conjecture for complete intersection numerical semigroup rings, J. Algebra 391 (2013), 114–124.

[60] S. Goto, Integral closedness of complete-intersection ideals, J. Algebra 108 (1987), no. 1, 151–160.

[61] S. Goto; F. Hayasaka, Finite homological dimension and primes associated to integrally closed ideals, Proc. Amer. Math. Soc. 130 (2002), no. 11, 3159–3164.

[62] S. Goto; N. Matsuoka; T. T. Phuong, Almost Gorenstein rings, J. Algebra, 379 (2013), 355–381.

[63] S. Goto; K. Ozeki; R. Takahashi; K.-I. Watanabe; K.-I. Yoshida, Ulrich ideals and modules, Math. Proc. Cambridge Philos. Soc. 156 (2014), no. 1, 137–166.

[64] S. Goto; K. Ozeki; R. Takahashi; K.-I. Watanabe; K.-I. Yoshida, Ulrich ideals and modules over two-dimensional rational singularities, Nagoya Math. J. 221 (2016), no. 1, 69–110.

[65] S. Goto; R. Takahashi; N. Taniguchi, Almost Gorenstein rings – towards a theory of higher dimension, J. Pure Appl. Algebra 219 (2015), no. 7, 2666–2712.

[66] S. Goto; R. Takahashi; N. Taniguchi; H. Le Truong, Huneke-Wiegand conjecture and change of rings, J. Algebra 422 (2015), 33–52.

[67] E. Green; I. Reiner, Integral representations and diagrams, Michigan Math. J. 25 (1978), no. 1, 53–84.

[68] Tor H. Gulliksen, On the length of faithful modules over Artinian local rings, Math. Scand. 31 (1972) 78–82.

[69] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series 119. Cambridge University Press, Cambridge, 1988. x+208 pp.

[70] W. J. Heinzer; L. J. Ratliff Jr. ; D. E. Rush, Basically full ideals in local rings, J. Algebra 250 (2002), no. 1, 371–396.

[71] I. Henriques, L. S¸ega, Free resolutions over short Gorenstein local rings, Math. Z. 267 (2011), 645–663.

[72] K. Herzinger, The number of generators for an ideal and its dual in a numerical semigroup, Comm. Algebra 27 (1999), 4673–4690.

[73] J. Herzog, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen–Macaulay–Moduln, Math. Ann. 233 (1978), no. 1, 21–34.

[74] J. Herzog; T. Hibi; D. Stamate, The trace of the canonical module, Israel J. Math. 233 (2019), no. 1, 133––165.

[75] J.Herzog; A. Simis; W. Vasconcelos, Approximations complexes and blowing-up rings II, J. Algebra 82(l) (1983),53–83.

[76] J. Herzog; B. Ulrich; J. Backelin, Linear maximal Cohen–Macaulay modules over strict complete intersections, J. Pure Appl. Algebra 71 (1991), no. 2-3, 187–202.

[77] H. Hijikata; K. Nishida, Bass orders in nonsemisimple algebras, J. Math. Kyoto Univ. 34 (1994), no. 4, 797–837.

[78] J. Hong; H. Lee; S. Noh; D. E. Rush, Full ideals, Comm. Algebra 37 (2009), no. 8, 2627–2639.

[79] M. J. Hopkins, Global methods in homotopy theory, Homotopy theory (Durham, 1985), 73–96, London Math. Soc. Lecture Note Ser., 117,Cambridge Univ. Press, Cambridge, 1987.

[80] C. Huneke; S. Iyengar; R. Wiegand, Rigid Ideals in Gorenstein Rings of Dimension One. Acta Mathematica Vietnamica (2018), 1–19.

[81] C. Huneke; D. A. Jorgensen, Symmetry in the vanishingof Ext over Gorenstein rings, Math. Scand. 93 (2003), 161–184.

[82] C. Huneke; G. J. Leuschke, Two theorems about maximal Cohen–Macaulay modules, Math. Ann. 324 (2002), no. 2, 391–404.

[83] C. Huneke; G. J. Leuschke, Local rings of countable Cohen–Macaulay type, Proc. Amer. Math. Soc. 131 (2003), no. 10, 3003–3007.

[84] C. Huneke; G. J. Leuschke, On a conjecture of Auslander and Reiten, J. Algebra 275 (2004), no. 2, 781–790.

[85] C. Huneke; I. Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, 336, Cambridge University Press, Cambridge, 2006.

[86] C. Huneke; A. Vraciu, Rings that are almost Gorenstein, Pacific J. Math. 225 (2006), no. 1, 85–102.

[87] C. Huneke; R. Wiegand, Tensor products of modules and the rigidity of Tor, Math. Ann. 299 (1994), no. 3, 449–476.

[88] O. Iyama; M. Wemyss, Maximal modifications and Auslander–Reiten duality for nonisolated singularities, Invent. Math. 197 (2014), no. 3, 521–586.

[89] S. B. Iyengar; R. Takahashi, Annihilation of cohomology and strong generation of module categories, Int. Math. Res. Not. IMRN 2016, no. 2, 499–535.

[90] H. Jacobinski, Sur les ordres commutatifs avec un nombre fini de r´eseaux ind´ecomposables, Acta Math. 118 (1967), 1–31.

[91] B. Keller, Chain complexes and stable categories, Manuscripta Math. 67 (1990), no. 4, 379–417.

[92] J. O. Kleppe; R. M, Miro-Roig ´ , On the normal sheaf of determinantal varieties, J. Reine Angew. Math. 719 (2016), 173–209.

[93] L. Klingler; L. Levy, Representation type of commutative Noetherian rings. I. Local wildness, Pacific J. Math. 200 (2001), no. 2, 345–386.

[94] T. Kobayashi, Syzygies of Cohen–Macaulay modules and Grothendieck groups, J. Algebra 490 (2017), 372–379.

[95] T. Kobayashi, Syzygies of Cohen–Macaulay modules over one dimensional Cohen– Macaulay local rings, preprint, arXiv:1710.02673.

[96] T. Kobayashi, The Huneke-Wiegand conjecture and middle terms of almost split sequences, preprint, arXiv:1907.02348.

[97] T. Kobayashi, Local rings with a self-dual maximal ideal, preprint, arXiv:1812.10341.

[98] T. Kobayashi; J. Lyle; R. Takahashi, Maximal Cohen-Macaulay modules that are not locally free on the punctured spectrum, preprint, arXiv:1903.03287.

[99] T. Kobayashi; R. Takahashi, Ulrich modules over Cohen-Macaulay local rings with minimal multiplicity, Q. J. Math. 70 (2019), no. 2, 487–507.

[100] T. Kobayashi; R. Takahashi, Rings whose ideals are isomorphic to trace ideals, Math. Nachr. 292 (2019), no. 10, 2252–2261.

[101] H. Knorrer ¨ , Cohen–Macaulay modules on hypersurface singularities, I, Invent. Math. 88 (1987), no. 1, 153–164.

[102] A. I. Kostrikin; I. R.Safarevi ˘ c˘, Groups of homologies of nilpotent algebras, Dokl. Akad.Nauk SSSR 115 (1957), 1066–1069.

[103] H. Krause and G. Stevenson, A note on thick subcategories of stable derived categories, Nagoya Math. J. 212 (2013), 87–96.

[104] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748–751.

[105] A. R. Kustin; A. Vraciu, Totally reflexive modules over rings that are close to Gorenstein, J. Algebra (to appear), arXiv:1705.05714v1.

[106] J. Lescot, La s´erie de Bass d’un produit fibr´e d’anneaux locaux, C. R. Acad. Sci. Paris S´er. IMath. 293 (1981), no. 12, 569–571.

[107] G. J. Leuschke; R. Wiegand, Local rings of bounded Cohen–Macaulay type, Algebr. Represent. Theory 8 (2005), no. 2, 225–238.

[108] G. J. Leuschke; R. Wiegand, Cohen–Macaulay Representations, Mathematical Surveys and Monographs, vol. 181, American Mathematical Society, Providence, RI, 2012.

[109] S. Lichtenbaum, On the vanishing of Tor in regular local rings, Illinois J. Math. 10, (1966) 220–226.

[110] H. Lindo, Trace ideals and centers of endomorphism rings of modules over commutative rings, J. Algebra 482 (2017), 102–130.

[111] H. Lindo; N. Pande, Trace ideals and the Gorenstein property, arXiv:1802.06491v2.

[112] J. Lipman, Stable ideals and Arf rings, Amer. J. Math., 93 (3), 649–685.

[113] H. Matsui; R. Takahashi; Y. Tsuchiya, When are n-syzygy modules n-torsionfree?, Arch. Math. (Basel) 108 (2017), no. 4, 351–355.

[114] H. Matsumura, Commutative ring theory, Translated from the Japanese by M. Reid, Second edition, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989.

[115] Y. Nakajima; K.-i. Yoshida, Ulrich modules over cyclic quotient surface singularities, J. Algebra 482 (2017), 224–247.

[116] S. Nasseh, R. Takahashi, Local rings with quasi-decomposable maximal ideal, Math. Proc. Cambridge Philos. Soc. (to appear), arXiv:1704.00719v2.

[117] A. Neeman, The chromatic tower for D(R), With appendix by Marcel B¨okstedt, Topology 31 (1992), no. 3, 519–532.

[118] J.-i. Nishimura, A few examples of local rings, I, Kyoto J. Math. 52 (2012), no. 1, 51–87.

[119] T. Ogoma, Cohen Macaulay factorial domain is not necessarily Gorenstein, Mem. Fac. Sci. Kˆochi Univ. Ser. A Math. 3 (1982), 65–74.

[120] T. Ogoma, Existence of dualizing complexes, J. Math. Kyoto Univ. 24 (1984), no. 1, 27–48.

[121] A. Ooishi, On the self-dual maximal Cohen–Macaulay modules, J. Pure Appl. Algebra 106 (1996), no. 1, 93–102.

[122] D. Quillen, Higher algebraic K-theory, I, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85–147, Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973.

[123] K. Ringel, The representation type of local algebras, Springer Lecture Notes in Mathematics, 488 (1975), 282–305.

[124] J. C. Rosales, Numerical semigroups that differ from a symmetric numerical semigroup in one element. Algebra Colloq. 15 (2008), no. 1, 23-–32.

[125] R. Rouquier, Dimensions of triangulated categories, J. K-Theory 1 (2008), 193–256.

[126] R. Roy, Auslander–Reiten Sequences over Gorenstein Rings of Dimension One (2018). Dissertations - ALL. 873. https://surface.syr.edu/etd/873

[127] R. Roy, Graded AR Sequences and the Huneke–Wiegand Conjecture, arXiv:1808.06600.

[128] D. E. Rush, Contracted, m-full and related classes of ideals in local rings, Glasg. Math. J. 55 (2013), no. 3, 669–675.

[129] H. Sabzrou; F. Rahmati, The Frobenius number and a-invariant, Rocky Mountain J. Math. 36 (2006), no. 6, 2021–2026.

[130] J. D. Sally, Tangent cones at Gorenstein singularities, Compositio Math. 40 (1980), no. 2, 167–175.

[131] J. D. Sally, Cohen-Macaulay local rings of embedding dimension e+d - 2, J. Algebra 83 (1983), 393–408.

[132] S. Sather-Wagstaff, Semidualizing modules and the divisor class group, Illinois J. Math. 51 (2007), no. 1, 255–285.

[133] F.-O. Schreyer, Finite and countable CM-representation type, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), 9–34, Lecture Notes in Math., 1273, Springer, Berlin, 1987.

[134] B. Stone, Super-stretched and graded countable Cohen–Macaulay type, J. Algebra 398 (2014), 1–20.

[135] J. Striuli; A. Vraciu, Some homological properties of almost Gorenstein rings, Commutative algebra and its connections to geometry, 201–215, Contemp. Math., 555, Amer. Math. Soc., Providence, RI, 2011.

[136] R. Takahashi, Syzygy modules with semidualizing or G-projective summands, J. Algebra 295 (2006), no. 1, 179–194.

[137] R. Takahashi, An uncountably infinite number of indecomposable totally reflexive modules, Nagoya Math. J. 187 (2007), 35–48.

[138] R. Takahashi, On G-regular local rings, Comm. Algebra 36 (2008), no. 12, 4472–4491.

[139] R. Takahashi,Modules in resolving subcategories which are free on the punctured spectrum. Pacific J. Math. 241 (2009), no. 2, 347–367.

[140] R. Takahashi, Classifying thick subcategories of the stable category of Cohen–Macaulay modules, Adv. Math. 225 (2010), no. 4, 2076–2116.

[141] R. Takahashi, Classifying resolving subcategories over a Cohen–Macaulay local ring, Math. Z. 273 (2013), no. 1-2, 569–587.

[142] R. Takahashi, Reconstruction from Koszul homology and applications to module and derived categories, Pacific J. Math. 268 (2014), no. 1, 231–248.

[143] W. Teter, Rings which are a factor of a Gorenstein ring by its socle. Inventione Math, 23 (1974), 153–162.

[144] B. Ulrich, Gorenstein rings and modules with high numbers of generators, Math. Z. 188 (1984), no. 1, 23–32.

[145] W. V. Vasconcelos, Ideals generated by R-sequences, J. Algebra 6 (1967), 309–316.

[146] J. Watanabe, m-full ideals, Nagoya Math. J. 106 (1987), 101–111.

[147] J. Watanabe, The syzygies of m-full ideals, Math. Proc. Cambridge Philos. Soc. 109 (1991), 7–13.

[148] K.-i. Yoshida, A note on minimal Cohen–Macaulay approximations, Comm. Algebra 24 (1996), no. 1, 235–246.

[149] Y. Yoshino, Cohen–Macaulay modules over Cohen–Macaulay rings, London Mathematical SocietyLecture Note Series, 146,Cambridge University Press, Cambridge, 1990.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る