リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evolution of milk oligosaccharides: Origin and selectivity of the ratio of milk oligosaccharides to lactose among mammals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evolution of milk oligosaccharides: Origin and selectivity of the ratio of milk oligosaccharides to lactose among mammals

Urashima Tadasu Katayama Takane Sakanaka Mikiyasu Fukuda Kenji Messer Michael 帯広畜産大学

2022.10.08

概要

Background

The carbohydrate fraction of mammalian milk is constituted of lactose and oligosaccharides, most of which contain a lactose unit at their reducing ends. Although lactose is the predominant saccharide in the milk of most eutherians, oligosaccharides significantly predominate over lactose in the milk of monotremes and marsupials.
Scope of review

This review describes the most likely process by which lactose and milk oligosaccharides were acquired during the evolution of mammals and the mechanisms by which these saccharides are digested and absorbed by the suckling neonates.
Major conclusions

During the evolution of mammals, c-type lysozyme evolved to α-lactalbumin. This permitted the biosynthesis of lactose by modulating the substrate specificity of β4galactosyltransferase 1, thus enabling the concomitant biosynthesis of milk oligosaccharides through the activities of several glycosyltransferases using lactose as an acceptor. In most eutherian mammals the digestion of lactose to glucose and galactose is achieved through the action of intestinal lactase (β-galactosidase), which is located within the small intestinal brush border. This enzyme, however, is absent in neonatal monotremes and macropod marsupials. It has therefore been proposed that in these species the absorption of milk oligosaccharides is achieved by pinocytosis or endocytosis, after which digestion occurs through the actions of several lysosomal acid glycosidases. This process would enable the milk oligosaccharides of monotremes and marsupials to be utilized as a significant energy source for the suckling neonates.
General significance

The evolution and significance of milk oligosaccharides is discussed in relation to the evolution of mammals.

参考文献

[1] M. Messer, T. Urashima, Evolution of milk oligosaccharides and lactose. Trends Glycosci. Glycotech. 14(77) (2002) 153-176. http://doi.org/10.4052/tigg.14.153.

[2] T. Urashima, S. Asakuma, M. Messer, Milk oligosaccharides. In: Comprehensive Glycoscience (J.P.Y. Kamerling ed.) (2007) pp. 693-724, Elsevier, Amsterdam. https://doi.org/10.1016/B978-044451967-2/00128-8.

[3] T. Urashima, K. Fukuda, M. Messer, Evolution of milk oligosaccharides and lactose: a hypothesis. Animal 6 (2012) 369-374. https://doi.org/10.1017/S1751731111001248.

[4] T. Urashima, M. Messer, O.T. Oftedal, Comparative biochemistry and evolution of milk oligosaccharides of monotremes, marsupials, and eutherians. In: Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life (P. Pontarotti, ed.) (2014) Springer, Switzerland, pp. 3-33. https://doi.org/10.1007/978-3-319-07623-2/_1.

[5] T. Urashima, M. Messer, Evolution of milk oligosaccharides and their function in monotremes and marsupials. In: Evolutionary Biology: Self/nonself evolution, species and complex traits evolution, methods and concepts (P. Pontarotti ed.) (2017) Springer, Switzerland, pp. 237-256. https://doi.org/10.1007/978-3-319-61569-1_12.

[6] Y. Zhou, L. Shearwin-Whyatte, J. Lt et al., Platypus and echidna genomes reveal mammalian biology and evolution. Nature (2021) (published 2021 Jan 06) https://doi.org/10.1038/s41586-020-03039-0.

[7] B.J. Richardson, A new view of the relationships of Australian and American marsupials. Aust. Mammal. (1988) 11, 71-75.

[8] M. Griffiths, D.L. Mcintosh, R.M.C. Leckie, The mammary glands of the Red kangaroo with observations on the fatty acid components of the milk triglycerides. J. Zool. (1972) 166, 265-275. https://doi.org/10.1111/j.1469-7998.1972.tb04089.x

[9] O.T. Oftedal, The mammary gland and its origin during synapsid evolution. J. Mammary Gland Biol. 7 (3) (2002a) 225-252. https://doi.org/10.1023/a:1022896515287.

[10] O.T. Oftedal, The origin of lactation as a water source for parchment-shelled eggs. J. Mammary Gland Biol. 7(3) (2002b) 253-266. http://doi.org/10.1023/a:1022848632125.

[11] O.T. Oftedal, The evolution of milk secretion and its ancient origins. Animal 6 (2012) 355- 368. https://doi.org/10.1017/S1751731111001935.

[12] O.T. Oftedal, Origin and evolution of the major constituents of milk. In: Advanced of Dairy Chemistry (P.L.H. McSweeney, P.F. Fox, eds.) vol. 1A, Proteins: Basic Aspects, 4th Edition. (2013) pp. 1-42. https://doi.org/10.1007/978-1-4614-4714-6_1.

[13] C. Vorbach, A. Scriven, M.R. Capecchi, The housekeeping gene xanthine oxidoreductase in necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary glands. Gene Dev. 16 (2002) 3223-3235. https://doi.org/10.1101/gad.1032702.

[14] S.L. Ogg, A.K. Weldon, L. Dobbie, A.J.H. Smith, I.H. Mather, Expression of butyrophilin (Btn1a1) in lactating mammry gland is essential for the regulated secretion of milk-lipid droplets. Proc. Natl. Acad. Sci. USA 101 (2004) 10084-10089. http://doi.org/10.1073/pnas.0402930101.

[15] K. Kawasaki, A. Lafont, J. Sire, The evolution of milk casein genes from tooth genes before the origin of mammals. Mol. Biol. Evol. 28 (2011) 2053-2061. http://doi.org/10.1093/molbev/msr020.

[16] H.A. McKenzie, F.H. White, Jr, Lysozyme and α-lactalbumin: structure, function, and interrelationships. Adv. Protein Chem. 41 (1991) 174-315. https://doi.org/10.1016/s0065- 3233(08)60198-9.

[17] B. Rajput, N.L. Shaper, J.H. Shaper, Transcriptional regulation of murine β1,4- galactosyltransferase in somatic cells. Analysis of a gene that serves both a housekeeping and a mammary gland-specific function. J. Bio. Chem. 271 (1996) 5131-5142. http://doi.org/10.1074/jbc.271.9.5131.

[18] V. Hayssen, D.G. Blackburn, α-Lactalbumin and the origins of lactation. Evolution 39 (1985) 1147-1149. http://doi.org/10.1111/j.1558-5646.1985.tb00454.x.

[19] K.E. Hopper, H.A. McKenzie, Comparative studies of α-lactalbumin and lysozyme: echidna lysozyme. Mol. Cell. Biochem. 3 (1974) 93-108. http://doi.org/10.1007/BF01659181.

[20] C.G. Teahan, H.A. McKenzie, M. Griffiths, Some monotreme milk “why” and blood proteins. Comp. Biochem. Physiol. B99 (1991) 99-118. https://doi.org/10.1016/0305- 0491(91)90014-5.

[21] D.C. Shaw, M. Messer, A.M. Scrivener, et al., Isolation, partial characterization, and amino acid sequence of α-lactalbumin from platypus (Ornithorhynchus anatinus) milk. Biochim. Biophys. Acta 1161 (1993) 177-186. https://doi.org/10.1016/0167-4838(93)90211- 9.

[22] M. Messer, M. Griffiths, P. Rismiller, D.C. Shaw, Lactose synthesis in a monotreme, the echidna (Tachyglossus aculeatus): isolation and amino acid sequence of echidna α- lactalbumin. Comp. Biochem. Physiol. B118 (1997) 403-410. https://doi.org/10.1016/s0305- 0491(97)00162-4.

[23] M. Messer, A.S. Weiss, D.C. Shaw, M. Westerman, Evolution of monotremes: Phylogentic relationship to marsupials and eutherians, and estimation of divergence dates based on α-lactalbumin amino acid sequences. J. Mammal. Evol. 5 (1998) 95-105. https://doi.org/10.1023/A:1020523120739

[24] K.E. Ebner, F.L. Schanbacher, Biochemistry of lactose and related carbohydrates. In: Lactation: A Comprehensive Treatise (B.L. Larson, V.R. Smith, eds.) (1974) vol. 2, Academic Press, New York, pp. 77-113.

[25] T. Urashima, S. Sato, J. Nio-Kobayashi, J. Hirabayashi. wobbling of substrate recognition caused by a molecular switch in the lactose synthase β4GalT 1, Glycoforum, (2021) 24(3) A6. https://www.glycoforum.gr.jp/article/24A6.html

[26] KY. Do, S. Do-◻, Cummings RD. α -Lactalbumin induces bovine milk β 1,4- galactosyltransferase to utilize UDP-GalNAc. J. Biol. Chem. 270 (1995) 18447-18541. https://doi.org/10.1074/jbc.270.31.18447

[27] B. Ramakrishnan, PS. Shah, PK Qasba. α-Lactalbumin (LA) stimulates milk β-1,4- galactosyltransferase 1 (β4Gal-T1) to transfer glucose from UDP-glucose to N- acetylglucosamine. Crystal structure of β4Gal-T1/LA complex with UDP-Glc. J. Biol. Chem. 276 (2001) 37665-37671. https://doi.org/10.1074/jbc.M102458200.

[28] K. Marino, J.A. Lane, J.L. Abrahams, et al., Method for milk oligosaccharide profiling 2- aminobenzamide labeling and hydrophilic interaction chromatography. Glycobiology 21 (2011) 1317-1330. https://doi.org/10.1093/glycob/cwr067.

[29] T. Sato, K. Furukawa, D.E. Greenwalt, A. Kobata A, Most bovine milk fat globule membrane glycoproteins contain Asparagine-linked sugar chains with GalNAcb1-4GlcNAc groups. J. Biochem 114 (1993) 890-900. https://doi.org/10.1093/oxfordjournals.jbchem.a124273.

[30] T. Sato, K. Takio, A. Kobata, D.E. Greenwalt, K. Furukawa, Site-specific glycosylation of bovine butylophilin. J. Biochem 117 (1996) 147-157. https://doi.org/10.1093/oxfordjournals.jbchem.a124702.

[31] S. Takimori, H. Shimaoka, J. Furukawa, et al., Alteration of the N-glycome of bovine milk glycoproteins during early lactation. FEBS J. 278 (2011) 3769-3781. https://doi.org/10.1111/j.1742-4658.2011.08299.x.

[32] M.D. White, S. Ward, N.J. Kuuhn, Biosynthesis of galactinol by lactose synthetase. Int. J. Biochem. 14 (1982) 449-451. https://doi.org/10.1016/0020-711X(82)90111-2.

[33] W.F. Naccarato, W.W. Welles, Identification of 6-O-beta-D-galactopyranosyl myo- inositol: A new form of myo-inositol in mammals. Biochem. Biophys. Res. Commun. 57 (1974) 026-331. https://doi.org/10.1016/0006-291X(74)90799-2.

[34] W.F. Naccarato, R.E. Ray, W.W. Wells, Characterization and tissue distribution of 6-O- beta-D-galactopyranosul myo-inositol in the rat, J. Biol. Chem. 250 (1975) 1872-1876.

[35] C.M. Reich, J.P.Y. Arnould, Evolution of Pinnipedia lactation strategies: a potential role for alpha-lactalbumin? Biol. Lett. 2 (2007) 346-349. https://doi.org/10.1098/rsbl.2007.0265.

[36] A. Sadovnikova, S.C. Garcia, R.C. Hovey, A comparative review of the cell biology, biochemistry, and genetics of lactose synthesis. J. Mammary Gland Biol. Neoplasia. 26 (2021) 181-196. https://doi.org/0.1007/s10911-021-09490-7.

[37] M. Messer, K.R. Kerry, Milk carbohydrate of the echidna and the platypus. Science 180 (1973) 201-203. https://doi.org/10.1126/science.180.4082.201.

[38] G.A. Jenkins, J.H. Bradbury, M. Messer, E. Trifonoff, Determination of the structures of fucosyl-lactose and difucosyl-lactose from the milk of monotremes, using 13C-n.m.r. spectroscopy. Carbohydr. Res. 126 (1984) 157-161. https://doi.org/10.1016/0008- 6215(84)85132-0.

[39] M. Messer, Identification of N-acetyl-4-O-acetylneuraminyl-lactose in echidna milk. Biochem. J. 139 (1974) 415-420. https://doi.org/10.1042/bj1390415.

[40] J.P. Kamerling, L. Dorland, H. van Halbeek et al., Structural studies of 4-O-acetyl-α-N- acetylneuraminyl-(2,3)-lactose, the main oligosaccharide in echidna milk. Carbohydr. Res. 100 (1982) 331-340. http://doi.org/10.1016/S0008-6215(00)81046-0.

[41] J. Amano, M. Messer, A. Kobata, Structures of the oligosaccharides isolated from milk of the platypus. Glycoconj. J. 2 (1985) 121-135. https://doi.org/10.1007/BF01050469.

[42] T. Urashima, H. Inamori, K. Fukuda, et al., 4-O-Acetyl-sialic acid (Neu4,5Ac2) in acidic milk oligosaccharides of the platypus (Ornithorhynchus anatinus) and its evolutionary significance. Glycobiology 25 (2015) 683-697. https://doi.org/10.1093/glycob/cwv010.

[43] O.T. Oftedal, S.C. Nicol, N.W. Davies, et al., Can an ancestral condition for milk oligosaccharides be determined? Evidence from the Tasmanian echidna (Tachyglossus aculeatus setosus). Glycobiology 24 (2014) 826-839. https://doi.org/10.1093/glycob/cwu041.

[44] I.M. Stewart, M. Messer, P.J. Walcott, et al., Intestinal glycosidase activities in one adult and two suckling echidnas: Absence of a neutral lactase (β-D-galactosidase). Aust. J. Biol. Sci. 36 (1983) 139-146. https://doi.org/1071/bi9830139.

[45] R. Schauer, G.V. Srinivasan, D. Wipfler et al., O-Acetylated sialic acids and their role in immune defense. Adv. Exp. Med. Bio. 705 (2011) 525-548. https://doi.org/10.1007/978-1- 4419-7877-6_28.

[46] G.M. Ruiz-Palacios, L.E. Cervantes, P. Romas, et al., Campylobacter jejuni binds intestinal H(O) antigen (Fucα1,2Galβ1,4GlcNAc) and fucosyl oligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278 (2003) 14112-14120. http://doi.org/10.1074/jbc.M207744200.

[47] J.A. Lane, K. Marino, J. Naughton et al., Anti-infective bovine colostrum oligosaccharides: Campylobacter jejuni as a case study. Int. J. Food Microbiol. 157 (2012) 182-188. https://doi.org/10.1016/j.ijfoodmicro.2012.04.027.

[48] M. Messer, G.S. Mossop, Milk carbohydrates of marsupials. ◻. Partial separation and characterization of neutral milk oligosaccharides of the Eastern grey kangaroo. Aust. J. Biol. Sci. 30 (1977) 379-388. http://doi.org/10.1071/BI9770379.

[49] M. Messer, B. Green, Milk carbohydrates of marsupials ◻. Quantative and qualitative changes in milk carbohydrates during lactation in the tammar wallaby (Macropus eugenii). Aust. J. Biol. Sci. 32 (1979) 519-531. https://doi.org/10.1071/bi9790519.

[50] M. Messer, E. Trifonoff, W. Stern, et al., Structure of a marsupial trisaccharide. Carbohydr. Res. 83 (1980) 327-334. https://doi.org/10.1016/s0008-6215(00)84545-0.

[51] J.G. Collins, J.H. Bradbury, E. Trifonoff, M. Messer, Structures of four new oligosaccharides from marsupial milk, determined mainly by 13C-n.m.r. [spectroscopy. Carbohydr. Res. 92 (1981) 136-140. https://doi.org/10.1016/s0008-6215(00)85988-1.

[52] M. Messer, E. Trifonoff, J.G. Collins, J.H. Bradbury, Structure of a branched tetrasaccharide from marsupial milk. Carbohydr. Res. 102 (1982) 316-320. https://doi.org/10.1016/s0008-6215(00)88076-3.

[53] J.H. Bradbury, J.G. Collins, G.A. Jenkins, et al., 13C-N.m.r. study of the structures of two branched oligosaccharides from marsupial milk. Carbohydr. Res. 122 (1983) 327-331. https://doi.org/10.1016/0008-6215(83)88344-x.

[54] T. Anraku, K. Fukuda, T. Saito, M. Messer, T. Urashima, Chemical characterization of acidic oligosaccharides inmilk of the red Kangaroo (Macropus rufus). Glycoconj. J. 29 (2012) 147-156. https://doi.org/10.1007/s10719-012-9372-7.

[55] T. Urashima, S. Fujita, K. Fukuda et al., Chemical characterization of milk oligosaccharides of the common brushtail possum (Trichosurus vulpecula) Glycoconj. J. 31 (2014) 387-399. https://doi.org/10.1007/s10719-014-9533-y.

[56] T. Urashima, E. Taufik, R. Fukuda et al., Chemical characterization of milk oligosaccharides of the koala (Phascolarctos cinereus). Glycoconj. J. 30 (2013) 801-811. https://doi.org/10.1007/s10719-013-9484-8.

[57] K. Hirayama, E. Taufik, M. Kikuchi et al., Chemical characterization of milk oligosaccharides of the common wombat (Vombatus ursinus). Ani. Sci. J. 87 (2016) 1167- 1177. https://doi.org/10.1111/asj.12566.

[58] T. Urashima, Y. Sun, K. Fukuda et al., Chemical characterization of milk oligosaccharides of the eastern quoll (Dasyurus viverrinus). Glycoconj. J. 32 (2015) 361-370. https://doi.org/10.1007/s10719-015-9600-z.

[59] T. Urashima, T. Yamamoto, K. Hirayama et al. Chemical characterization of milk oligosaccharides of the tiger quoll (Dasyurus maculates), a marsupial. Glycoconj. J. 33 (2016) 797-807. https://doi.org/10.1007/s10719-016-9675-1.

[60] C.A. Africano Remoroza, Y. Liang, T.D. Mak et al., Increasing the coverage of a mass spectral library of milk oligosaccharides using a hybrid-search-based bootstrapping method and milks from a wide variety of mammals.Anal Chem. 92 (2020) 10316-10326. https://doi.org/10.1021/acs.analchem. 0c00342.

[61] Y. Mineguchi, M. Miyoshi, E. Taufik et al.,Chemical characterization of the milk oligosaccharides of some Artiodactyla species including giraffe (Giraffa camelopardis), sitatunga (Tragelaphus spekii), deer (Cervus Nippon yesoensis) and water buffalo (Bubalus bubalis). Glycoconj. J. 35 (2018) 561-574. https://doi.org/10.1007/s10719-018-9849-0

[62] T. Urashima, T. Saito, K. Ohmisya, K. Shimazaki, Structural determination of three neutral oligosaccharides in bovine Holstein-Friesian) colostrum, including the novel trisaccharide; GalNAcα1-3Galβ1-4Glc. Biochim. Biophys. Acta 1073 (1991) 225-229. http://doi.org/10.1016/0304-4165(91)90207-W.

[63] S. Albrecht, J.A. Lane, K. Marino et al., A comparative study of free oligosaccharides in the milk of domestic animals. Br J Nutr 111 (2014) 1313-1328. https://doi.org/10.1017/S0007114513003772.

[64] T. Urashima, T. Sakamoto, H. Ariga, T. Saito, Structure determination of three neutral oligosaccharides obtained from horse colostrum. Carbohydr Res 194 (1989) 280-287. http://doi.org/10.1016/0008-6215(89)85026-8.

[65] K. Fukuda, K. Yamamoto, K. Ganrorig et al., Chemical characterization of the oligosaccharides in Bacterian camel (Camelus bactrianus) milk and colostrum. J Dairy Sci 93 (2010) 5572-5587. http://doi.org/10.3168/jds.2010-3151.

[66] O.A. Alhaj, E. Taufik, Y. Handa et al., Chemical characterization of oligosaccharides in commercially pasteurized dromedary camel (Camelus dromedaries) milk. Int. Dairy J. 28 (2013) 70-75. http://doi.org/10.1016/j.idairyj.2012.08.008.

[67] G. Gronberg, P. Lipniunas, T. Lundgren, et al., Structural analysis of five new monosialylated oligosaccharides from human milk. Arch Biochem Biophys 296 (1992) 597- 610. https://.doi.org/10.1016/0003-9861(92)90616-6.

[68] P.J. Walcott, M. Messer, Intestinal lactase (β-galactosidase) and other glycosidase activities in suckling and adult tammar wallaby (Macropus eugenii). Aust. J. Biol. Sci. 33 (1980) 521-530. https://doi.org/10.1071/bi9800521.

[69] M. Messer, E.A. Crisp, R. Czolij, Lactose digestion in suckling macropods. In: Kangaroos, Wallabies and Rat Kangaroos (G. Grigg, P. Jarman, I. Hume eds.) (1989) Surry Beatty & Sons Pty Ltd, NSW, Australia, Vol 1, pp. 217-221.

[70] M. Messer, K.R. Nicholas, Biosynthesis of marsupial milk oligosaccharides: Characterization and development changes of two galactosyltransferases in lactating mammary glands of the tammar wallaby, Macropus eigenii. Biochim Biophys Acta 1077 (1991) 79-85. https://doi.org/10.1016/0167-4838(91)90528-8.

[71] T. Urashima, M. Messer, W.A. Bubb, Biosynthesis of marsupial milk oligosaccharides ◻: characterization of β6-N-acetylglucosaminyltransferase in lactating mammary glands of the tammar wallaby, Macropus eugenii. Biochim Biophys Acta 1117 (1992) 223- 231.https://doi.org/10.1016/0304-4165(92)90083-7.

[72] E.A. Crisp, R. R. Czolij, M. Messer, Absence of beta-galactosidase (lactase) activity from intestinal brush borders of suckling macropods: implications for mechanism of lactose absorption. Comp. Biochem. Physiol. B88 (1987) 923-927. https://doi.org/10.1016/0305- 0491(87)90265-3.

[73] E.A. Crisp, P.E. Cowan, M. Messer. Intestinal lactase (β-galactosidase) and other disaccharidase activities of suckling and adult common brushtail possums, Trichosurus vulpecula (Marsupialia: Phalangeridae. Reprod. Fertil. Dev. 1(4) (1989) 309-314. https://doi.org/10.1071/rd9890315.

[74] S.A. Munks, B. Green, K. Newgrain, M. Messer, Milk-composition in the common ringtail possum, Pseudocheirus-Peregrinus (Petauridae, Marsupialia). Aust. J. Zool. 39 (1991) 403- 416. https://doi.org/10.1071/ZO9910403.

[75] R.E. Jenness, E.A. Regehr, R.E. Sloan, Comparative biochemical studies of milks -Ⅱ. Dialyzable carbohydrates. Comp. Biochem. Physiol. 13 (1964) 339-352. https://doi.org/10.1016/0010-406x(64)90028-3.

[76] N.J. Kuhn, The lactose and neuraminlactose content of rat milk and mammary tissue. Biochem. J. 130 (1972) 177-180. https://doi.org/10.1042/bj1300177.

[77] J.J. Dickson, M. Messer, Intestinal neuraminidase activity of suckling rats and other mammals. Biochem. J. 170 (1978) 407-413. https:://doi.org/10.1042/bj1700407.

[78] E. Oliveros, E. Vazquez, A. Barranco, et al., Sialic acid and sialylated oligosaccharide supplementation during lactation improves learning and memory in rats. Nutrients, 110 (2018) E1519. https://doi.org/10.3390/nu10101519.

[79] T. Urashima, J. Hirabayashi, S. Sato, A. Kobata, Human milk oligosaccharides as essential tools for basic and application studies on galectins. Trends Glycosci. Glycotechnol. 30(172) (2018) SE51-SE65. https://doi.org/10.4052/tigg.1734.1SE.

[80] T. Urashima, T. Katayama, K. Fukuda, J. Hirabayashi, Human milk oligosachrides and innate immunity. In: Comprehensive Glycoscience, the second edition (J. Barchi, Jr. ed.) (2020), Elsevier. https://doi.org/10.1016/B978-0-12-819475-1.00009-2.

[81] M.B. Engfer, B. Stahl, B. Finke, G. Sawatzki, H. Daniel, Human milk oligosaccharides are resident to enzymatic hydrolysis in the upper gastrointestinal tract. Am. J. Clin. Nutr. 71 (2000) 1589-1596. https://doi.org/10.1093/ajcn/71.6.1589.

[82] J.C. Brand-Miller, P. McVeagh, Y. McNeil, M. Messer, Digestion of human milk oligosaccharides by healthy infants evaluated by the lactulose hydrogen breast test. J. Pediatr. 133 (1998) 95-98. https://doi.org/10.1016/s0022-3476(98)70185-4.

[83] D.S. Newburg, Oligosaccharides in human milk and bacterial colonization. J. Pediatr. Gastroenterol. Nutr. 30 (2000) S8-S17. https://doi.org/10.1097/00005176-200000002-00003.

[84] A. Kobata, Structures and application of oligosaccharides in human milk. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 86 (2010) 1-17. https://doi.org/10.2183/pjab.86.731

[85] A. Kobata, Structures, classification, and biosynthesis of human milk oligosaccharides. In:Prebiotics and Probiotics in Human Milk (Mi. McGuire, Ma. McGuire, L. Bode, eds.) (2016) Academic Press, London/San Diego/Cambridge/Oxford, pp. 16-44. https://doi.org/10.1016/B978-0-12-802725-7.00002-6.

[86] S. Thurl, M. Munzert, G. Boehm, B. Stahl, Systematic review of the concentrations of oligosaccharides in human milk. Nutr. Rev. 75 (11) (2017) 920-933. https://doi.org/10.1093/nutrit/nux044.

[87] S. Thurl, M. Munzert, J. Henker et al. Variation of human milk oligosaccharides in relation to milk groups and lactation periods. Br. J. Nutr. 104 (2010) 1261-1271. https://doi.org/10.1017/S0007114510002072.

[88] L. Bode, Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22 (2012) 1147-1162. https://doi.org/10.1093/glycob/cws074.

[89] L. Bode, E. Jantscher-Krenn, Structurre-Function relationships of human milk oligosaccharides. Adv. Nutr. 3 (2012) 383S-391S. https://doi.org/10.3945/an.111.001404.

[90] S. Rudloff, C. Kunz, Milk oligosaccharides and metabolism. Adv. Nutr. 3 (2012) 398S- 405S. https://doi.org/10.3945/an.111.001594.

[91] D. Garrido, D. Barile, D.A. Mills, A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv. Nutr. 3 (2012) 415S-421S. https://doi.org/10.3945/an.111.001586.

[92] M. Kitaoka, Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Adv. Nutr. 3 (2012) 422S-429S. https://doi.org/10.3945/an.111.001420.

[93] C. Kunz, Historical aspects of human milk oligosaccharides. Adv. Nutr. 3 (2012) 430S- 439S. https://doi.org/10.3945/an.111.001776.

[94] S.M. Donovan, M. Wang, M. Li et al., Host-microbe interactions in the neonatal intestine: role of human milk oligosaccharides. Adv. Nutr. 3 (2012) 450S-455S. https://doi.org/10. 3945/an.112.001859.

[95] B. Wang, Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv. Nutr. 3 (2012) 465S-472S. https://doi.org/10.3945/an.112.001875.

[96] T. Urashima, S. Asakuma, F. Leo et al., The predominance of type 1 oligosaccharides is a feature specific to human breast milk. Adv. Nutr. 3 (2012) 473S-482S. https://doi.org/10.3945/an.111.001412.

[97] D.S. Newburg, S.H. Naubauer, Carbohydrates in milks: analysis, quantities and significance. In: Hanbook of Milk Composition (R.G. Jensen, ed.) (1995) pp. 273-349, Academic Press, San Diego.

[98] C. Quin, S.D. Vicaretti, N.A. Mohtarudin et al., Influence of sulfonated and diet-derived human milk oligosaccharides on the infant microbiome and immune markers. J. Biol. Chem. 295 (2020) 4035-4048. https://doi.org/10.1074/jbc.RA119.011351.

[99] B.P. Kellman, A. Richelle, J.Y. Yang, et al., Elucidating human milk oligosaccharide biosynthetic genes through network-based multi-omics integration. bioRxiv https://doi.org/10.1101/2020.09.02.278663.

[100] S.S. van Leewen, R.J.W. Schoemaker, G.J. Gerwig, et al., Rapid milk group classification by 1H- NMR analysis of Le and H epitopes in human milk oligosaccharide donor samples. Glycobiology 24 (2014) 728-739. https//doi.org/10.1093/glycob/cwu036.

[101] N. Tsukuda, K. Yahagi, T. Hara, et al., Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life, ISME J. (2021) https://doi.org/10.1038/s41396-021-00937-7.

[102] B.M. Hennick, L. Rodriguez, T. Lakshmikanth, et al., C. Pou, et al., Bifidobacteria- mediated immune system inprinting early in life. Cell (2021) https://doi.org/10.1016/j.cell.2021.05.030.

[103] A.M. Ehrlich, A.R. Pacheco, B.M. Henrick, et al., Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiol. 20 (2020) 357-369. https://doi.org/10.1186/s12866-020- 02023-y.

[104] T. Sakurai, T. Odamaki, J. Xiao, Production of indole-3-lactic acid by Bifidobacterium strains isolated from human infants, Microorganisms 7 (2019) 340-345. https://doi.org/10.3390/microorganisms/7090340.

[105] M Sakanaka, A. Gotoh, K. Yoshida et al., Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: Prevalence of the gene set and its correlation with bifidobacterial-rich microbiota formation. Nutrients 12 (2020) 71-91. https://doi.org/10.3390/nu12010071.

[106] R. Suzuki, J. Wada, T. Katayama, et al., Structural and thermodynamic analyses of sulute-binding protein from Bifidobacteium longum specific for core 1 disaccharide and lacto- N-biose 1. J. Biol. Chem 283 (2008) 13165-13173. https://doi.org/10.1074/jbc.M709777200.

[107] M. Kitaoka, J. Tian, M. Nishimoto, Novel putative galactose operon involving lacto-N- biose phosphorylase in Bifidobacterium longum. Appl. Environ. Microbiol. 71 (2005) 3158- 3162. https://doi.org/10.1128/AEM.716.3158-3162.2005.

[108] A. Gotoh, T. Katoh, M. Sakanaka et al., Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum. Sci. Rep. 8 (2018) 13958-13971. https://doi.org/10.1038/s41598- 018-32080-3.

[109] S. Asakuma, E. Hatakeyama, T. Urashima et al., Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacterial. J. Biol. Chem. 286 (2011) 34583-34592. https://doi.org/10.1074/jbc.M111.248138.

[110] M. Egan, M.O. Motherway, M. Ventura, D. van Sinderen, Metabolism of sialic acid by Bifidobacterium breve UCC2003. Appl. Environ. Microbiol. 80 (2014) 4414-4426, https://doi.org/10.1128/AEM.01114-14.

[111] K. Nishiyama, A. Nagai, K. Uribayashi, et al., Two extracellular sialidases from Bifidobacterium bifidum promote the degradation of sialyl-oligosaccharides and support the growth of Bifidobacterium breve. Anaerobe 52 (2018) 22-28. https://doi.org/10.1016/j.anaerobe.2018.05.007.

[112] T. Katoh, M.N. Ojima, M. Sakanaka, et al., Enzymatic adaptation of Bifidobacterium bifidum to host glycans, viewed from glycoside hydrolyases and carbohydrate-binding modiles. Microorganisms 8 (2020) 481-498. https://doi.org/10.3390/microorganisms8040481.

[113] M. Egan, M.O. Motherway, M. Kilcoyne, et al., Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol. 14 (2014) 282-295. https://doi.org/10.1186/s12866-014-0282-7.

[114] H. Sakurama, M. Kiyohara, J. Wada, et al., Lacto-N-biosidase encoded by a novel gene of Bifidobacterioum longum subspecies longum shows unique substrate soecificity and requires a designated chaperone for its active expression. J. Biol. Chem. 288 (2013) 25194- 25206. https://doi.org./10.1074/jbc.M113.484733.

[115] D.A. Sela, J. Chapman, A. Adeuya et al. The genome sequence of Bifodobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. USA. 195 (2008) 18964-18969. https://doi.org/10.1073/pnas.0809584105.

[116] E. Yoshida, H. Sakurama, M. Kiyohara et al., Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degradating type-1 and type-2 human milk oligosaccharides. Glycobiology 22 (2012) 361-368. https://doi.org/10.1093/glycob/cwr116.

[117] M. Sakanaka, M.E. Hansen, A. Gotoh et al., Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacterial-infant symbiosis. Sci. Adv. 5 (2019) eaaw7696. https://doi.org/10.1126/scadv.aaw7696.

[118] K. James, M.O. Motherway, F. Bottacini, D van Sinderen, Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo- tetraose through overlapping, yet distinct pathways. Sci. Rep. 6 (2016) 38560, https://doi.org/10.1038/srep38560.

[119] D. Garrido, J.H. Kim, J.B. German, et al., Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLos One 6 (2011) e17315. https://doi.org/10.1371/journal.pone.0017315.

[120] M.J. Pichler, C. Yamada, B. Shuoker, et al., Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways. Nat. Commun. 11 (2020) 3285. https://doi.org/10.1038/s41467-020-17075-x.

[121] I. Kostopoulos, J. Elzinga, N. Ottman, et al., Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Sci. Rep. 10 (2020) 14330. https://doi.org.1038/s41598-020-71113-8.

[122] Z.T. Yu, C. Chen, D.S. Newburg, Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23 (2013) 1281-1292. https://doi.org/10.1093/glycob/cwt065.

[123] G.N. Bidart, J. Rodriguez-Diaz, M.J. Yebra, The extracellular wall-bound β -N- acetylglucosaminidase from Lactobacillus casei is involved in the metabolism of the human milk oligosaccharide lacto-N-triose. Appl. Environ, Microb. 82 (2015) 570-577. https://doi.org/10.1128/aem.02888-15.

[124] G.N. Bidart, J.Rodriguez-Diaz, V. Monedero, M.J. Yebra, A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N- biose in Lactobacillus casei. Mol. Microbiol. 93 (2014) 521-538. https://doi.org/10.1111/mmi.12678.

[125] H. Akazawa, Y. Tsujikawa. I. Fukuda et al., Isolation and identification of milk oligosaccharide-degrading bacteria from the intestinal contents of suckling rats. Biosci Microbiota Food Health 40 (2021) 27-32. https://doi.org/10.12938/bmfh.2020-024.

[126] J. Li, M. Jiang, J. Zhou, et al., Characterization of rat and mouse acidic milk oligosaccharides based on hydrophilic interaction chromatography coupled with electrospray tandem mass spectrometry. Carbohydr. Polym. 259 (2021) 117734. https://doi.org/10.1016/j.carbpol.2021.117734.

[127] T. Urashima, G. Odaka, S. Asakuma et al., Chemical characterization of oligosaccharides in chimpanzee, bonobo, gorilla, orangutan and siamang milk or colostrum. Glycobiology, 19 (2009) 499-508. https://doi.org/10.1093/glycob/cwp006.

[128] A.E. Lin, C.A. Autran, A. Szyszka et al., Human milk oligosaccharides inhibit growth of group B Streptococcus. J. Biol. Chem. 292 (2017) 11243-11249. https://doi.org/ 10.1074/jbc.M117.789974

[129] K.M. Craft, J.A. Gaddy, S.D. Townsend, Human milk oligosaccharides (HMOs) sensitize group B Spreptococcus to clindamycin, erythromycin, gentamicin, and minocycline on strain specific basis. ACS Chem. Biol. 13 (2018) 2020-2026. https://doi.org/10.1021/acschembio.8b00661.

[130] S.N. Hester, X. Chen, M. Li et al., Human milk oligosaccharides inhibit rotavirus infectivity in vitro and in acutely infected piglets. Br. J. Nutr. 110 (2013) 1233-1242. https://doi.org/10.1017/S0007114513000391.

[131] S. Ramini, C. Stewart, D. Laucirica et al., Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nat. Commun. 9 (2018) 5010. https://doi.org/10.1038/s41467-018-07476-4.

[132] L. Xiao, T. Leusink-Muis, N. Nettelarij et al., Human milk oligosaccharides 2’- fucosyllactose improves innate and adaptive immunity in an influenza-specific murine vaccination model. Front. Immunol. 9 (2018) 452. https://doi.org/10.3389/fimmu.2018.00452.

[133] V. Dotz, C. Rudloff, D. Blank et al., 13C-labelled oligosaccharides in breastfed infants’ urine individual-, structure-, and time-dependent differences in the excretion. Glycobiology 24 (2014) 185-194. https://doi.org/10.1093/glycob/cwt099.

[134] D.S. Newburg, A.C. Tanritanir, S. Chakrabarti, Lactodifucotetraose, a human milk oligosaccharides, attenuates platelet function and inflammatory cytokine release. J. Thromb. Thrombolysis, 42 (2016) 46-55. https://doi.org/10.1007/s11239-015-1331-2.

[135] L. Castillo-Courtade, S. Han, S. Lee et al., Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy 70 (2015) 1091-1102. https://doi.org/10.1111/all.12650.

[136] E. Jantsher-Krenn, M. Zherebtsov, C. Nissan et al., The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotizing enterocolitis in neonatal rats. Gut 61 (2012) 1417-1425. https://do.org/:10.1136/gutjnl-2011-301404.

[137] C.P. Sodhi, P. Wipf, Y. Yamaguchi et al., The human milk oligosaccharides 2’- fucosyllactose and 6’-sialyllactose protect against the development of necrotizing entorocolitis by inhibiting toll-like receptor 4 signaling. Pediatr. Res. 89(1) (2021) 91-101. https:doi.org/10.1038/s41390-020-0852-3.

[138] W. Zhang, J.H. Yang, W. Tu, X. Zhou, Sialylated human milk oligosaccharides prevent intestinal inflammation by inhibiting toll like receptor 4/NLRP3 inflammasome pathway in necrotizing enterocolitis rats. Nutr. Metob. 18 (2021) 5. https://doi.org/10.1186/s12996-020- 00534-z.

[139] S.K. Jacobi, T. Yatsunenko, D. Li, Dietary isomers of sialyllactose increase ganglioside sialic acid concentrations in the corpus callosum and cerebellum and modulate the colonic microbiota of formula-fed piglets. J. Nutr. 146 (2016) 200-208. https://doi.org/10.3945/jn.115.220152.

[140] T. Urashima, Y. Mineguchi, K. Fukuda, et al., Evolution of milk oligosaccharides of carnivora and artiodactyla: Significance of the ratio of oligosaccharides to lactose in milk. In: Evolutionary Biology – A transdisciplinary approach (P. pontarotti ed.) (2020) Springer, Switzerland, pp. 359-377. https://doi.org/10.1007/978-3-030-57246-4_15.

[141] T. Urashima, Y. Kusaka, T. Nakamura, et al., Chemical characterization of milk oligosaccharides of the brown bear, Ursus arctos yesoensis. Biochim. Biophys. Acta, 1334 (1997) 247-255. https://doi.org/10.1016/s0304-4165(96)00101-8.

[142] T. Urashima, W. Sumiyoshi, T. Nakamura, et al., Chemical characterization of milk oligosaccharides of the Japanese black bear, Ursus thibetanus japonicus. Biochim. Biophys. Acta 1472 (1999) 290-306. https://doi.org/10.1016/s0304-4165(99)00134-8.

[143] T. Urashima, T. Yamashita, T. Nakamura, et al., Chemical characterization of milk oligosaccharides of the polar bear, Ursus maritimus. Biochim. Biophys. Acta 1475 (2000) 395-408. https://doi.org/10.1016/s0304-4165(00)00103-3.

[144] T. Urashima, T. Nakamura, K. Teramoto, et al., Chemical characterization of sialyl oligosaccharides in milk of the Japanese black bear, Ursus thibetanus japonicus. Comp. Biochem. Physiol. 139B (2004) 587-595. https://doi.org/10.1016/j.cbpc.2004.07.012.

[145] W.A. Bubb, T. Urashima, K. Kohso, et al., Occurrence of an unusual lactose sulfate in dog milk. Carbohydr. Res. 318 (1999) 123-128. https://doi.org/10.1016/S0008- 6215(99)00102-0.

[146] E. Taufik, N. Sekii, A. Senda et al., Neutral and acidic milk oligosaccharides of the striped skunk (Mephitidae: Mephitis mephitis). Anim. Sci. J., 84, 569-578, 2013. https://doi.org/10.1111/asj.12040.

[147] T. Urashima, T. Nakamura, A. Ikeda et al., Characterization of oligosaccharides in milk of a mink, Mustela vison. Comp. Biochem. Physiol. A142 (2005) 461-471. https://doi.org/10.1016/j. cbpa.2005.09.015.

[148] T. Urashima, E. Yamaguchi, T. Ohshima, et al., Chemical structures of oligosaccharides in milk of the raccoon (Procyonlotor). Glycoconj. J. 35 (2018) 275-286. https://doi.org/10.1007/s10719-018-9821-z

[149] T. Urashima, M. Yamamoto, T. Nakamura et al., Chemical characterisation of the oligosaccharides in a sample of milk of a white-nosed coati, Nasua narica (Procyonidae: Carnivora). Comp. Biochem. Physiol. A 123 (1999) 187-193. https://doi.org/10.1016/s1095- 6433(99)00049-5.

[150] T. Urashima, M. Umewaki, E. Taufik et al., Chemical structures of oligosaccharides in milks of the American black bear (Ursus Americanus Americanus) and cheetah (Acinonyx jabatus). Glycoconj. J. 37 (2020) 57-76. https://doi.org/10.1007/s10719-019-09899-7.

[151] T. Nakamura, T. Urashima, T. Mizukami et al., Composition and oligosaccharides of a milk sample of the giant panda, Ailuropoda melanoleuca. Comp. Biochem. Physiol. B135 (2003) 439-448. https://doi.org/10.1016/S1096-4959(03)00093-9.

[152] T. Urashima, M. Arita, M. Yoshida et al., Chemical characterization of the oligosaccharides in hooded seal. (Cystophora cristata) and Australian fur seal (Arctocephalus pusillus doriferus) milk. Comp. Biochem. Physiol. B128 (2001) 307-323. https://do.org/10.1016/s1096-4959(00)00327-4.

[153] T. Urashima, T. Nakamura, K. Yamaguchi et al., Chemical characterization of the oligosaccharides in milk of high Arctic harbour seal (Phoca vitulina vitulina). Comp. Biochem. Physiol. A135 (2003) 549-563. https://doi.org/10.1016/s1095-6433(03)00130-2.

[154] T. Urashima, T. Nakamura, D. Nakagawa et al., Characterization of oligosaccharides in a milk of bearded seal (Erignathus barbatus). Comp. Biochem. Physiol. B138 (2004) 1-18. https://doi.org/10.1016/j.cbpc.2003.12.009.

[155] Y. Uemura, S. Takahashi, A. Senda et al., Chemical characterization of milk oligosaccharides of a spotted hyena (crocuta crocuta). Comp. Biochem. Physiol. A152 (2009) 158-161. https://doi.org/10.1016/j.cbpa.2008.09.013.

[156] A. Senda, E. Hatakeyama, R. Kobayashi et al., Chemical characterization of milk oligosaccharides of an African lion (Panthera leo) and a clouded leopard (Neofelis nebulosa). Anim. Sci. J. 81 (2010) 687-693. https://doi.org/10.1111/j.1740-0929.2010.00787.x.

[157] U. Galili, Evolution of α1,3galactosyltransferase and of the α-Gal epitope. In: α-Gal and anti-Gal (U. Galili, J Luis Avila eds.) Subcellular Biochemistry, vol. 32. (1999) Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, pp. 1 – 23. https://doi.org/10.1007/978-1-4615-4771-6_1.

[158] S.M. Rostami, T. Benet, J. Spears et al., Milk oligosaccharides over time of lactation from different dog breeds. PLos One 9 (2014) e99824. https://doi.org/10.1371/journal.pone.0099824.

[159] M.A. Ramsay, R.L. Dunbrack, Physiological constraints on life history phenomena: The example of small bear cubs at birth. Am. Nat. 127 (1986) 735-743. https://www.jstor.org/stable/2461412.

[160] O.T. Oftedal, G. Alt, E.M. Widdowson, M.R. Jukubasz, Nutrition and growth of suckling black bears (Ursus americanus) during their mother’s winter fast., Br. J. Nutr. 70 (1993) 59- 79. https://doi.org/10.1079/bjn19930105.

[161] O.T. Oftedal, W.D. Bowen, D.J. Bonness, Lactation performance and nutrient deposition in pups of the harp seal, Phoca groenlandica, on ice floes off southeast Labrador. Physiol. Zool. 69 (1996) 635-657. http://www.jstor.org/stable/30164220.

[162] Y. Uemura, S. Asakuma, T. Nakamura et al., Occurrence of a unique sialyl tetrasaccharide in colostrum of a bottlenose dolphin (Tursiops truncatus). Biochim. Biophys. Acta. 1725 (2005) 290-297. https://doi.org/10.1016/j.bbagen.2005.05.011.

[163] T. Urashima, H. Sato, J. Munakata et al., Chemical characterization of oligosaccharides in beluga (Delphinapterus leucas) and Minke whale (Balaenoptera acutorostrata) milk. Comp. Biochem. Physiol., B132 (2002) 611-624. https://doi.org/10.1016/s1096-4959(02)00083-0.

[164] T. Urashima, M. Kobayashi, S. Asakuma et al., Chemical characterization of the oligosaccharides in Bryde’s whale (Balaenoptera edeni) and Sei whale (Balaenoptera borealis lesson) milk. Comp. Biochem. Physiol. B146 (2007) 153-159. https://doi.org/10.1016/j.cbpb.2006.10.094.

[165] R. Kuhn, A. Gauhe, Bestimmung der Bindungsstelle von sialinsaureresten in Oligosaccharides mit Hilfe von Periodat. Chem. Ber. 98 (1965) 395-413. http://doi.org/10.1002/cber.19650980211.

[166] M.L. Schneier, M.E. Rafelson, Isolation of two structural isomers of N- acetylneuraminyllactose from bovine colostrum. Biochim. Biophys Acta 130 (1966) 1-11. https://doi.org/10.1016/0304-4165(66)90002-X.

[167] T. Saito, T. Itoh, S. Adachi, Presence of two neutral disaccharides containing N- acetylhexosamine in bovine colostrum as free forms. Biochim. Biophys. Acta 801 (1984) 147- 150. https://doi.org/10.1016/0304-4165(84)90223-x.

[168] T. Saito, T. Itoh, S. Adachi, Chemical structures of three neutral trisaccharides isolated in free forms from bovine colostrum. Carbohydr. Res. 165 (1987) 43-51. https://doi.org/10.1016/0008-6215(87)80076-9.

[169] T. Nakamura, H. Kawase, K. Kimura et al., Changes in bovine colostrum and milk sialyloligosaccharides during early lactation. J. Dairy Sci. 86 (2003) 1315-1320. https://doi.org/10.3168/jds.S0022-0302(03)73715-1.

[170] B. Fong, K. Ma, P. McJarrow, Quantification of bovine milk oligosaccharides using liquid chromatography-selected reaction monitoring-mass spectrometry. J. Agr. Food Chem. 59 (2011) 9788-8795. https://doi.org/10.1021/jf202035.

[171] R. Hickey, T. Urashima, Indigenous oligosaccharides in bovine milk. In: Encyclopedia of Dairy Science, the third edition (P. McSweeney, J. McNamara eds.) (2021) Academic Press. https://doi.org/10.1016/B978-0-12-818766-1.00322-6.

[172] T. Urashima, E. Taufik, K. Fukuda, S. Asakuma, Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Biosci. Biotechnol. Biochem 77 (2013) 455-466. https://doi.org/10.1271/bbb.120810.

[173] S.S. van Leeuwen, E.M. te Poele, A.C. Chatziioannou, et al., Goat milk oligosaccharides: their diversity, quantity, and functional properties in comparison to human milk oligosaccharides. J. Agric. Food Chem. 68 (2020) 13469-13485. http://doi.org/10.1021/acs.jafc.0c03766.

[174] N. Tao, E.J. Freeman, S Freeman et al., Bovine milk glycome. J. Dairy Sci. 91 (2008) 3768-3778. https://doi.org/10.3168/jds.2008-1305.

[175] T. Urashima, T. Saito and T. Kimura, Chemical structures of three neutral oligosaccharides obtained from horse (Thoroughbred) colostrum. Comp. Biochem. Physiol., B100 (1991) 177-183. https://doi.org/10.1016/0305-0491(91)90103-K.

[176] K Goto, K. Fukuda, A. Senda et al., Chemical characterization of oligosaccharides in the milk of six species of New and Old world monkeys. Glycoconj. J. 27 (2010) 703-715. https://doi.org/10.1007/s10719-010-9315-0.

[177] T. Urashima, S. Murata and T. Nakamura, Structural determination of monosialyl trisaccharides obtained from caprine colostrum. Comp. Biochem. Physiol. 116B (1997) 431- 435. https://doi.org.10.1016/S0305-0491(96)00269-6.

[178] T.Nakamura, T. Urashima, M. Nakagawa and T. Saito Sialyllactose occurs as free lactones in ovine colostrum. Biochim. Biophys. Acta, 1381 (1998) 286-292. https://doi.org/10.1016/S0304-4165(98)00040-3.

[179] M. Sasaki, T. Nakamura, K. Hirayama et al., Characterization of two novel sialyl N- acetyllactosaminyl nucleotides separated from ovine colostrum. Glycoconj. J. 33 (2016) 789- 796. https://doi.org/10.1007/s10719-016-9672-4.

[180] Y. Uemura, S. Asakuma, L. Yon, et al., Structural determination of the oligosaccharides in the milk of an Asian elephant (Elephas maximus). Comp. Biochem. Physiol. A145 (2006) 468-478. https://doi.org/10.1016/j.cbpa.2006.08.001.

[181] G. Osthoff, L. Dickens, T. Urashima, et al., Structural characterization of oligosaccharides in the milk of an African elephant (Loxodonta africana africana).Comp. Biochem. Physiol. B150 (2008) 74-84. https://doi.org/10.1016/j.cbpb.2008.01.010.

[182] C. Kunz, S. Rudloff, W. Shad, D. Braun. Lactose-derived oligosaccharides in the milk of elephants: comparison with human milk. Br. J. Nutr. 82 (1999) 391-399. https://doi.org/10.1017/s0007114599001798.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る